Funct. Mater. 2018; 25 (2): 208-217.

doi:https://doi.org/10.15407/fm25.02.208

Influence of crystal growth conditions and carbothermal treatment on activator charge state in Ti:sapphire

S.V.Nizhankovskiy, N.S.Sidelnikova, V.V.Baranov

Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61178 Kharkiv, Ukraine

Abstract: 

Presented are the results of comparative studies of the influence of carbothermal treatment of the raw material (Al2O3 and TiO2 powders) and reducing properties of the growth medium on the charge state of titanium ions in Al2O3:Ti crystals. It is shown that carbothermal treatment at temperatures of 1700-1800°C makes it possible to additionally decrease the relative content of titanium in the charge state Ti4+ by 2.5-3 times.

Keywords: 
Al2O3, TiO2, carbothermal treatment.
References: 

1. P.F.Moulton, J. Opt. Soc. Am. B., 3, 125 (1986). https://doi.org/10.1364/JOSAB.3.000125

2. A.J.Strauss, R.E.Fahey, A.Sanchez, R.L.Aggarwal, SPIE Laser Nonlin. Opt. Mater., 681, 62 (1986). https://doi.org/10.1117/12.939620

3. A.Sanchez, A.J.Strauss, R.L.Aggarwal, R.E.Fahey, IEEE J. Quant. Electron., 24, 995 (1988). https://doi.org/10.1109/3.220

4. R.L.Aggarval, A.Sanchez et al., IEEE J. Quant. Electron., 24, 1003 (1988). https://doi.org/10.1109/3.221

5. N.S.Sidelnikova, S.V.Nizhankovskyi, V.V.Baranov, Functional Materials, 22, 461 (2015). https://doi.org/10.15407/fm22.04.461

6. A.Ya.Danko, V.M.Puzikov, V.P.Seminozhenko, N.S.Sidelnikova, Technological Bases of Growth of Leucosapphire in Reducing Conditions. ISMA, Kharkov (2009) [in Russian].

7. Hu Ke-Yan, Xu Jun, Wang Chuan-Yong et al., J. Inorg. Mater., 27, 1321 (2012). https://doi.org/10.3724/SP.J.1077.2012.12164

8. S.V.Nizhankovskiy, A.Ya Dan'Ko, E.V. Krivonosov, V.M.Puzikov, J. Inorg. Mater., 46, 41 (2010).

9. L.V.Gurvich, I.V.Weitz, V.A.Medvedev et al., Thermodynamic Properties of Individual Substances. Reference Edition in 4 Volumes., V1, B2. Science, Moscow (1978) [in Russian].

10. L.V.Gurvich, I.V.Weitz, V.A.Medvedev et al., Thermodynamic Properties of Individual Substances. Reference Edition in 4 Volumes., V4, B2, Science, Moscow (1978) [in Russian].

11. M.Cancarevic, M.Zinkevich, F.Aldinger, Computer Coupling of Phase Diagrams and Thermochemistry, 31, 330 (2007). https://doi.org/10.1016/j.calphad.2007.01.009

12. A.Ya.Danko, N.S.Sidelnikova, Functional Materials, 8, 271 (2001).

13. L.V.Gurvich, I.V.Weitz, V.A.Medvedev et al., Thermodynamic Properties of Individual Substances. Reference Edition in 4 Volumes, V2, B2, Science, Moscow (1978) [in Russian].

14. L.V.Gurvich, I.V.Weitz, V.A.Medvedev et al., Thermodynamic Properties of Individual Substances. Reference Edition in 4 Vol., V3, B2, Science, Moscow (1981) [in Russian].

15. J.-M.Lihrmann, J.Tirlocq, P.Descamps, F.Cambier, J. Eur. Ceramic Soc., 19, 2781 (1999). https://doi.org/10.1016/S0955-2219(99)00072-2

16. M.S.Akselrod, V.S.Kortov, D.J.Kravetsky, V.I.Gotlib, Radiat. Prot. Dosim., 32, 15 (1990).

17. X.Yang, H.Li, Y.Cheng et al., J. Cryst. Growth, 310, 3800 (2008). https://doi.org/10.1016/j.jcrysgro.2008.05.047

18. X.Yang, J.Li, Q.Y.Bi et al., J. Appl. Phys., 104, 1 (2008).

19. N.A.Moskvin, V.A.Sandulenko, E.A.Sidorova, J. Appli. Spectrosc., 32, 1017 (1980).

20. S.V.Nizhankovskii, N.S.Sidel'nikova, V.V.Baranov, Phys. Solid State. 57, 763 (2015). https://doi.org/10.1134/S1063783415040216

21. V.G.Tyazhelova, J. Appl. Spectr., 10, 22 (1969). https://doi.org/10.1007/BF01881156

22. J.Stone-Sundberg, M.Kokta, A.Silberstein et al., Workshop: Technological Bottlenecks in CHISP Lasers, Paris, April 1-4, (2003).

Current number: