Вы здесь

Funct. Mater. 2018; 25 (2): 246-257.


Effect of L-arginine additive on the growth and physical properties of Potassium Dihydrogen Phosphate single crystals

E.I.Kostenyukova1, A.V.Uklein2, V.V.Multian2, I.M.Pritula1, O.N.Bezkrovnaya1, A.G.Doroshenko1, S.V.Khimchenko3, A.G.Fedorov3, A.N.Levchenko4, A.I.Starikov4, V.Ya.Gayvoronsky2

1Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
3Division of Functional Materials Chemistry, SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
4V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine


Potassium dihydrogen phosphate (KDP) single crystals doped with L-arginine (L-arg) amino acid were grown from aqueous solutions onto a point seed using the temperature reduction method. The incorporation of L-arg molecules into the crystal was verified by means of ninhydrin reaction. Undoped and L-arginine doped KDP crystals were characterized by XRD method and structure perfection of the doped crystals was shown o correspond to the one of pure KDP. It was established that incorporation of L-g molecules into KDP crystal had an effect on the formation of additional bonds in the crystal structure, that manifested itself in the thermal properties of the doped crystals. Investigation of ε^/ε|| value which characterizes the dielectric permittivity anisotropy showed that it was minimal at 0.5-1.0 wt.% L-arg concentrations. In this case, the introduced L-arg seems to lead to creation of additional hydrogen bonds and disappearance of proton vacancies bound up with aliovalent impurities. Since the crystals contain different impurity defects, L-arg molecules are oriented in he lattice in a different way, depending on the type of the defects, and diminish the anisotropy. The present study testifies that the attenuation of the values of DC conductivity, dielectric permittivity and loss tangent at L-arg concentrations of 1 wt.% is probably related o the content decrease of the proton vacancies and the impurity-proton vacancy complexes dipoles, formed due to incorporation of the impurity ions into the crystal. The incorporation of L-arg molecules into the crystalline matrix results in an order of magnitude enhancement of he refractive nonlinear optical (NLO) response efficiency and its sign turn to self-focusing effect versus the self-defocusing obtained in the nominally pure KDP crystal. Similar kind of the NLO response efficiency rise in the KDP single crystals doped with TiO2 nanoparticles. The phenomenon can produce the enhancement of the optical harmonics generation efficiency due to the laser radiation localization and improvement of phase matching conditions realization.

KDP crystals, L-arginine, DC conductivity, self-action effects, nonlinear refraction

1. D.Eimerl, Ferroelectrics, 72, 95 (1987). https://doi.org/10.1080/00150198708017942

2. B.Kahr, S.-H.Jang, J.A.Subromony, M.P.Kelly et al., Adv. Mater., 8, 941 (1996). https://doi.org/10.1002/adma.19960081117

3. V.G.Grachev, I.A.Vrable, G.I.Malovichko et al., J. Appl. Phys., 112, 014315 (2012). https://doi.org/10.1063/1.4733301

4. A.V.Kosinova, M.I.Kolybaeva, O.N.Bezkrovnaya et al., Cryst. Res. Technol., 49, 965 (2014). https://doi.org/10.1002/crat.201400285

5. I.M.Pritula, A.V.Kosinova, D.A.Vorontsov et al., J. Cryst. Growth, 355, 26 (2012). https://doi.org/10.1016/j.jcrysgro.2012.06.033

6. D.Xue, S.Zhang, Chem. Phys. Lett., 301, 449 (1999). https://doi.org/10.1016/S0009-2614(99)00055-X

7. F.Zhang, K.Li, H.Ratajczak et al., J. Molec. Structure., 976, 69 (2010). https://doi.org/10.1016/j.molstruc.2010.01.021

8. P.Kumaresan, S.Moorthy Babu, P.M.Anbarasan, Opt. Mater., 30, 1361 (2007). https://doi.org/10.1016/j.optmat.2007.07.002

9. K.D.Parikh, D.J.Dave, B.B.Parekh et al., Bull. Mater. Sci., 30, 105 (2007). https://doi.org/10.1007/s12034-007-0019-4

10. S.Gunasekaran, S.Ponnusamy, R.Rajasekaran, Indian J. Phys., 78, 553 (2004).

11. M.Meena, C.K.Mahadevan, Cryst. Res. Technol., 43, 166 (2008). https://doi.org/10.1002/crat.200711064

12. I.M.Pritula, E.I.Kostenyukova, O.N.Bezkrovnaya et al., Opt. Mater., 57, 217 (2016). https://doi.org/10.1016/j.optmat.2016.04.044

13. W.L.Bond, Acta Cryst., 13, 814 (1960). https://doi.org/10.1107/S0365110X60001941

14. A.H.Compton, S.K.Allison, The Interpretation of X-ray Spectra, in: X-Rays in Theory and Experiment, D.Van Nostrand, 2nd Ed.; New York (1967).

15. I.M.Pritula, A.V.Kosinova, O.N.Bezkrovnaya et al., Opt. Mater., 35, 2429 (2013). https://doi.org/10.1016/j.optmat.2013.06.046

16. E.I.Kostenyukova, O.N.Bezkrovnaya, M.I.Kolybaeva et al., Functional Materials, 23, 27 (2016). https://doi.org/10.15407/fm23.01.027

17. P.Kumaresan, S.Moorthy Babu, P.M.Anbarasan, J. Opt. Adv. Mater., 9, 2780 (2007).

18. B.S.Kumar, K.R.Babu, Ind. J. Pure Appl. Phys., 46, 123 (2008).

19. U.Pisipaty, S.Sankar, R.Jayavel, Chem. Pharm. Sci., 1, 56 (2014).

20. K.D.Parikh, D.J.Dave, B.B.Parekh et al, Cryst. Res. Technol., 45, 603 (2010). https://doi.org/10.1002/crat.201000019

21. G.G.Muley, M.N.Rode, B.H.Pawar, Acta Phys. Pol. A, 116, 1033 (2009). https://doi.org/10.12693/APhysPolA.116.1033

22. D.Xu, D.Xue, J. Cryst. Growth, 286, 108 (2006). https://doi.org/10.1016/j.jcrysgro.2005.09.040

23. M.O'Keeffe, C.T.Perrino, J. Phys. Chem. Solids, 28, 211 (1967). https://doi.org/10.1016/0022-3697(67)90110-2

24. L.B.Harris, G.J.Vella, J. Chem. Phys., 10, 4294 (1967).

25. L.B.Harris, G.J.Vella, J. Chem. Phys., 58, 4550 (1973). https://doi.org/10.1063/1.1679018

26. E.D.Yakushkin, E.P.Efremova, A.I.Baranov, Cryst. Rep., 46, 830 (2001). https://doi.org/10.1134/1.1405872 27 A.N.Levchenko, I.M.Pritula, A.V.Kosinova et al., Proc. of 8th Int. Conf. Laser and Fiber-Opt. Networks Modeling. (LFNM`2010), 136 (2010).

28. B.V.R.Chowdari, Y.R.Sekhar, Phys. Stat. Sol. (a), 54, 413 (1979). https://doi.org/10.1002/pssa.2210540152

29. S.Goma, C.M.Padma, C.K.Mahadevan, Mater. Lett., 60, 3701 (2006). https://doi.org/10.1016/j.matlet.2006.03.092

30. J.J.Kweon, C.E.Lee, S.J.Noh et al., J. Appl. Phys., 111, 016102 (2012). https://doi.org/10.1063/1.3673850

31. E.Chang, J.J.Kweon, J.K.Park et al., Curr. Appl. Phys., 14 805 (2014). https://doi.org/10.1016/j.cap.2014.03.003

32. A.V.Uklein, A.S.Popov, V.V.Multian et al., Nanoscale Res. Lett., 10, 102 (2015). https://doi.org/10.1186/s11671-015-0799-1

33. V.Ya.Gayvoronsky, M.A.Kopylovsky, M.S.Brodyn et al., Laser Phys. Lett., 10, 035401 (2013). https://doi.org/10.1088/1612-2011/10/3/035401

34. I.Pritula, V.Gayvoronsky, M.Kopylovsky et al., Functional Materials, 15, 420 (2008).

35. I.Pritula, A.Kosinova, M.Kolybayeva et al., Mater. Res. Bull., 43, 2778 (2008) https://doi.org/10.1016/j.materresbull.2007.10.040

Current number: