Вы здесь

Funct. Mater. 2018; 25 (2): 258-266.


Hot isostatic pressing of potassium-magnesium-phosphate materials for cesium immobilization

S.Y.Sayenko, V.A.Shkuropatenko, G.O.Kholomeev, O.V.Pylypenko, A.V.Zykova, M.M.Belash, R.V.Tarasov, O.Y.Surkov, E.A.Ulybkina, K.V.Lobach, M.Sawczak2, M.Kmiec3

1NSC Kharkov Institute Physics and Technology, 1, Akademicheskaya St., Kharkov, 61108, Ukraine
2Institute of Fluid-Flow Machinery Polish Academy of Science, 14 J.Fiszera St., 80-952 Gdansk, Poland
3Gdansk University of Technology, G.Narutowicza 11/12, 80-233 Gdansk, Poland


High-density potassium-magnesium phosphates (PMP), produced by hot isostatic pressing (HIP) at temperature of 900°C and pressures of 200 and 400 MPa, are promising materials for the immobilization of radioactive cesium. The maximum density of PMP samples was obtained after HIP at pressure of 400 MPa, 900° and holding time of 1 h, and PMP + 10 wt. % CsCl samples at 200 MPa, 900° and 1 h. The resulted materials possess monophase monoclinic structure of potassium-magnesium monophosphate α-KMgPO4. The possibility of PMP materials to incorporate cesium into its structure by substitution with potassium has been studied by X-ray phase analysis and laser mass spectrometry methods using. The homogeneous fine-crystalline structure of ceramic PMP and PMP + 10 wt.% CsCl samples after HIP was analyzed by scanning electron microscopy method.

potassium-magnesium phosphate, cesium, hot isostatic pressing, X-ray phase analysis, electron microscopy, density.

1. V.M.Azhazha, V.A.Belous, S.Yu.Sayenko et al., Nuclear Energy. Handling of Spent Nuclear Fuel and Radioactive Waste, Review of the Materials of Foreign and Domestic Press, ed. by I.M.Neklyudova, Naukova Dumka, Kiev (2006) [in Russian].

2. A.O.Merkushkin, The Thesis for the Degree of Candidate of Chemical Sciences, Moscow (2003).

3. V.L.Balkevich, Technical Ceramics, Stroyizdat, Moscow (1984) [in Russian].

4. A.P.Shpak, V.L.Karbovskiy, V.V.Trachevskiy, Apatity, Akademperiodika, Kiev (2002) [in Russian].

5. E.R.Vance, J.Davis, K.Olufson et al., J. Nucl. Mater., 420, 396 (2012). https://doi.org/10.1016/j.jnucmat.2011.09.020

6. S.Yu.Sayenko, Nucl. Radiat. Safety, 1, 41 (2015).

7. A.S.Wagh, Chemically Bonded Phosphate Ceramics, Twenty-First Century Materials with Diverse Application, Second Edition, Elsevier Ltd (2016).

8. S.E.Vinokurov, Y.M.Kulyako, O.M.Slyuntchev et al., J. Nucl. Mater., 385, 189 (2009). https://doi.org/10.1016/j.jnucmat.2008.09.053

9. D.Singh, V.R.Mandalika, S.J.Parulekar, A.S.Wagh, J. Nucl. Mater., 348, 272 (2006). https://doi.org/10.1016/j.jnucmat.2005.09.026

10. A.S.Wagh, S.Y.Sayenko, V.A.Shkuropatenko et al., J. Hazard. Mater., 302, 241 (2016). https://doi.org/10.1016/j.jhazmat.2015.09.049

11. Siyu Zhang, Hui-Sheng, Shao-Wen Huang, Ping Zhang, J. Therm. Anal. Calorim., 111, 35 (2013). https://doi.org/10.1007/s10973-011-2170-9

12. L.Miladi, A.Oueslati, K.Guidara, RSC (Royal Soc. Chem.) Adv., 6, 83280 (2016). https://doi.org/10.1039/C6RA18560F

13. G.Wallez, C.Colbeau-Justin, T.Le Mercier et al., J. Solid State Chem., 136, 175 (1998). https://doi.org/10.1006/jssc.1997.7671

14. Yoshinobu Yokomori, Kazuhito Asazuki, Natsumi Kamiya et al., Sci. Reports, 4, 4195 (2014). https://doi.org/10.1038/srep04195

15. Xiaoxia Zhang, Yan Wu, Yuezhou Wei et al., J. Nucl. Mater., 485, 39 (2017). https://doi.org/10.1016/j.jnucmat.2016.12.029

Current number: