Вы здесь

Funct. Mater. 2018; 25 (2): 274-281.

doi:https://doi.org/10.15407/fm25.02.274

Galvanic ternary Fe-Co-W coatings: structure, composition and magnetic properties

I.Yu.Yermolenko, M.V.Ved', N.D.Sakhnenko, L.P.Fomina, I.G.Shipkova

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova St., 61002 Kharkiv, Ukraine

Abstract: 

Principles of Fe-Co-W alloys electrodeposition from complex Fe (III) based citrate electrolytes are discussed. The effect of both current density and pulse on/off time on the quality, composition and surface morphology of the electrolytic alloys were determined. The application of pulsed electrolysis provides increasing ungsten content up to 13 at.%, at current efficiency of 70-75 %. Globular surface of Fe-Co-W coatings is caused by refractory metals incorporation, and crystalline and amorphous parts of structure are visualized by X-ray spectroscopy, including inter-metallic phases Co7W6, Fe7W6 along with α-Fe and Fe3C. The coherent-scattering region size of the amorphous part is 2-8 nm. Magnetic characteristics of amorphous Fe-Co-W coatings were measured in dependence of deposition ime. The conclusion was made that the content of magnetic phase in upper layers of coating is greater than in the bottom ones due to decreasing W atom concentration.

Keywords: 
coercive force, Fe-Co-W galvanic alloy, pulse electrolysis, magnetic properties.
References: 

1. N.Tsyntsaru, H.Cesiulis, M.Donten et al., Surf. Eng. Appl. Electrochem., 48, 491 (2012). https://doi.org/10.3103/S1068375512060038

2. G.Yar-Mukhamedova, M.Ved', N.Sakhnenko et al., Appl Surf. Sci., 383, 346 (2016). https://doi.org/10.1016/j.apsusc.2016.04.046

3. H.Capel, P.H.Shipway, S.J.Harris, Wear, 255, 917 (2003). https://doi.org/10.1016/S0043-1648(03)00241-2

4. M.V.Ved', M.D.Sakhnenko, H.V.Karakurkchi et al., Mater. Sci., 51, 701 (2016). https://doi.org/10.1007/s11003-016-9893-5

5. H.Feng-jiao, L.Jing-tian, L.Xin, H.Yu-ning, Trans. Nonferrous Met. Soc. China, 14, 901 (2004).

6. Salt Liwen Ma, Xiaoli Xi, Zuoren Nie et al., Int. J. Electrochem. Sci., 12, 1034 (2017), https://doi.org/10.20964/2017.02.37

7. N.Tsyntsaru, A.Dikusar, H.Cesiulis et al., Powder Metall. Met. Ceram., 48, 419 (2009). https://doi.org/10.1007/s11106-009-9150-7

8. Y.S.Yapontseva, A.I.Dikusar, V.S.Kyblanovskii, Surf. Eng. Appl. Electrochem., 50, 330 (2014). https://doi.org/10.3103/S1068375514040139

9. E.Gomez, E.Pellicer, E.Valles, J. Electroanal. Chem., 517, 109 (2001). https://doi.org/10.1016/S0022-0728(01)00682-9

10. E.Gomez, E.Pellicer, E.Valles, J. Electroanal. Chem., 568, 29 (2004). https://doi.org/10.1016/j.jelechem.2003.12.032

11. V.S.Kublanovsky, Yu.S.Yapontseva, Electrocatalysis, 5, 372 (2014). https://doi.org/10.1007/s12678-014-0197-y

12. M.Glushkova, T.Bairachna, M.Ved, M.Sakhnenko, in: MRS Proc., 1491, mrsf12-1491 (2013).

13. I.Y.Yermolenko, M.V.Ved, N.D.Sakhnenko, Y.I.Sachanova, Nanoscale Res. Lett., 12, 352 (2017), doi:10.1186/s11671-017-2128-3. https://doi.org/10.1186/s11671-017-2128-3

14. M.V.Ved', N.D.Sakhnenko, A.V.Karakurchi, S.I.Zyubanova, Russ. J. Appl. Chem., 87, 276 (2014), doi:10.1134/S1070427214030057. https://doi.org/10.1134/S1070427214030057

15. D.Z.Grabco, A.I.Dikusar, V.I.Petrenko, E.E.Harea, Surf. Eng. Appl. Electrochem., 43, 11 (2007). https://doi.org/10.3103/S1068375507010024

16. A.V.Karakurkchi, M.V.Ved', N.D.Sakhnenko, I.Yu.Ermolenko, Russ. J. Appl. Chem., 88, 1860 (2015), doi:10.1134/S1070427215011018X. https://doi.org/10.1134/S1070427215011018X

17. N.Elezovic, B.N.Grgur, N.V.Krstajic, V.D.Jovic, J. Serb. Chem. Soc., 70, 879 (2005). https://doi.org/10.2298/JSC0506879G

18. E.Gomez, E.Pellicer, X.Alcobe, E.Valles, J. Solid State Electrochem., 8, 497 (2004). https://doi.org/10.1007/s10008-004-0495-z

19. R.Bosart, Ferromagnetism, Inostrannaya Literatura, Moskva (1956) [in Russian].

20. F.I.Danilov, I.V.Sknar, Yu.E.Sknar, Russ. J. Electrochem., 50, 293 (2014). https://doi.org/10.1134/S1023193514030045

21. D.P.Weston, S.J.Harris, P.H.Shipway et al., Electrochim. Acta, 55, 5695 (2010). https://doi.org/10.1016/j.electacta.2010.05.005

22. M.D.Sakhnenko, M.V.Ved', I.Yu.Ermolenko et al., Mater. Sci., 53, 680 (2017), doi:10.1007/s11003-017-0009-7. https://doi.org/10.1007/s11003-017-0009-7

23. N.Cirovic, P.Spasojevic, L.Ribic-Zelenovic et al., Sci. Sintering, 47, 347 (2015), doi:10.2298/SOS1503347C. https://doi.org/10.2298/SOS1503347C

24. I.Y.Yermolenko, M.V.Ved', A.V.Karakurkchi et al., The Issues Chem. Chemical Technol., 2, 4 (2017).

25. I.F.Mikhailov, A.A.Baturin, A.I.Mikhailov, E.A.Bugaev, Instruments and Exp. Techniques, 56, 84 (2013). https://doi.org/10.1134/S0020441213010089

26. M.Labardi, M.Allegrini, M.Salerno et al., Appl. Phys., 59, 3 (1994). https://doi.org/10.1007/BF00348412

27. K.Sudzuki, X.Phydzimori, K.Hasimoto, Amorphous Metals, Metallurgy, Moscow (1987) [in Russian].

28. A.F.Guillermet, Z.Metallkde, Bd.79 H., 10, 633 (1988).

29. Ph.Ye.Lyuborsky, Amorphous Metal Coatings, Metallurgy, Moscow (1987) [in Russian].

Current number: