Вы здесь

Funct. Mater. 2018; 25 (2): 282-288.

doi:https://doi.org/10.15407/fm25.02.282

Effects of metal ion-doping on the characteristics and photocatalytic activities of TiO2 nanotubes

Shaona Wang, Rongfang Yuan, Beihai Zhou, Huanhuan Guan

Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, Department of Environment Engineering, School of Civil and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083

Abstract: 

Ion-doped TiO2 nanotubes were synthesized via a hydrothermal method and characterized by transmission electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy and specific surface areas. The binding energies of Cu2+, V2+, and Zn2+ indicated that the doping ions existed as Cu2+, V5+, and Zn2+, respectively. With the increase of the calcination temperature, the intensity of the anatase phase decreased and the BET surface area decreased. The extent of anatase phase increased with the increasing the calcination temperature, and then decreased. The highest catalytic activity for the un-doped TiO2 nanotubes was observed at a calcination temperature of 500 °C, with a Rhodamine B (RB) removal efficiency of 98.1%. The removal efficiency of RB was 98.2% when Cu2+-doped catalyst calcined at 450 °C was added, 0.1% higher than the un-doped TiO2 nanotubes. The highest photocatalytic activity was obtained in the presence of Zn2+-doped catalyst calcined at 550 °C, where 98.7% of RB was removed.

Keywords: 
nanotubes; metal ions-doped; Rhodamine B; photocatalytic oxidation
References: 

1. Salkan, F., Erdemoglu, S., Asilturk, M., et al Mater. Res. Bull., 41(12), 2276, 2006.

2. Lin, C., Lin, K.S., Chemosphere, 66, 1872, 2007.

3. Li, H., Wang, J., Li, H., Yin, S., Sato, T. , Res. Chem. Interm., 36(1), 27, 2010.

4. Bastakoti, B.P., Wu, K.C., Yamauchi, Y. J. Nanosci. Nanotechn., 13(4), 2735, 2013.

5. Oveisi, H., Suzuki, N., Beitollahi, A., Yamauchi, Y., J. Sol-Gel Scie. Techn., 56 (2), 212, 2010.

6. Tachikawa, T., Tojo, S., Fujitsuka, M., Toru Sekino, A., Majima, T., J. Phys. Chem. B, 110(29), 14055, 2006.

7. Sun, L., Li, J., Wang, C.L., Li, S.F., Chen, H.B., Lin, C.J., Lin C J., Solar Energy Mater. Solar Cells,, 93, 1875, 2009

8. Zhu, Y., Zhang, L., Yao, W., Cao, L., Appl. Surf.Scie., 158, 32, 2000.

9. Vasquez, G.C., Pecheherrero, M.A., Maestre, et al, J.Phys. Chem. C, 117(4), 1941, 2013.

10. Spurr, R.A., Myers, H., Anal. Chem., 29(5), 760, 1957.

11. Pang, Y.L., Abdullah, A.Z., J. Hazard. Mater. 235-236(2), 326, 2012.

12. Ravichandran, L., Selvam, K., Krishnakumar, B., Swaminathan, J. Hazard. Mater. 167(1), 763, 2009.

13. Chang, S.M., Liu, W.S., Appl. Catal. B Environment., 156-157, 466, 2014.

14. Li, X., Zou, X., Qu, Z., Zhao, Q., Wang, L., Chemosphere, 83(5), 674, 2011.

15. Gomes, Silvaalmeida, G.D., Dekosaka, A.T., Monteirorogero, P., Otacruz, S., SilveiraIkeda, a., Ichikawapetri, T., Siqueira, D.F. Mater. Res., 10(4), 469, 2007.

16. Zhang, G.W., He, G.H., Xue, W.L., Xu, X.F., Liu, D.N., Xu, Y.H.,, J, Mol,Catal, A Chem,, 363-364, 423, 2012.

17. Pang, Y.L., Abdullah, A.Z., Ultrasonics Sonochem., 19(3), 642, 2012.

18. Zhou, M., Yu, J., Liu, S., Zhai, P., Huang, Appl. Catal. B Environment., 89(1-2), 160, 2009.

19. Pang, Y.L., Abdullah, A.Z., Appl. Catal. B Environment.,129(3), 473, 2013.

20. Li, A., Zhao, X., Liu, H., Qu, J.,Water Res., 45(18), 6131, 2011.

21. Khaki, M.R.D., Sajjadi, B., Raman, A.A.A., Wan, M.A.W.D., Shmshirband, S., Measurement, 77, 155, 2016

22. Zang, L., Liu, C.Y., Ren, X.M., J.Photochem. Photobiol. A Chem., 79(3), 189, 1994.

23. Hidalgo, J.M., Tisler, Z., Kubicka, D., Raabova, K., Bulanek, R. , J. Molec. Catal. A Chem., 420, 178, 2016.

24. Habibi, M.H., Hassanzadeh, A., Mahdavi, S. J. Photochem.Photobiol. A Chem., 172(1), 89, 2005.

Current number: