Funct. Mater. 2018; 25 (2): 294-299.
Induction and inhibition of free radicals by the GdVO4:Eu3+ and CeO2 nanoparticles under X-ray irradiation
Institute for Scintillation Materials, STC Institute for Single Crystals National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
The effect of aqueous colloidal solutions of GdVO4:Eu3+ and CeO2 nanoparticles on the efficiency of generation or inhibition of free radicals under X-ray irradiation was studied. It is shown that gadolinium orthovanadate acts as a free radical generator, and cerium dioxide as an inhibitor.
1. R.Ranganathan, S.Madanmohan, A.Kesavan et al., Int. J. Nanomedicine, 7, 1043 (2012).
2. F.Danhier, O.Feron, V.Preat, J. Control Release, 148, 135 (2010). https://doi.org/10.1016/j.jconrel.2010.08.027
3. T.Sun, Y.S.Zhang, B.Pang et al., Angew Chem. Int. Ed Engl., 53, 12320 (2014).
4. J.F.Hainfeld, F.A.Dilmanian, D.N.Slatkin et al., J. Pharm. Pharmacol., 60, 977 (2008). https://doi.org/10.1211/jpp.60.8.0005
5. D.Kwatra, A.Venugopal, S.Anant, Transl Cancer Res., 2, 330 (2013).
6. E.Porcel, S.Li, N.Usami et al., J. Phys. Conf. Ser., 373, 012006 (2012). https://doi.org/10.1088/1742-6596/373/1/012006
7. C.J.Liu, C.H.Wang, S.T.Chen et al., Phys. Med. Biol., 55, 931 (2010). https://doi.org/10.1088/0031-9155/55/4/002
8. J.F.Hainfeld, D.N.Slatkin, H.M.Smilowitz, Phys. Med. Biol., 49, 309 (2004). https://doi.org/10.1088/0031-9155/49/18/N03
9. J.Ni, Q.Wu, Y.Li et al., J. Nanopart. Res., 10, 643 (2008). https://doi.org/10.1007/s11051-007-9295-6
10. E.Oberdorster, Environ Health Perspect., 112, 1058 (2004). https://doi.org/10.1289/ehp.7021
11. W.N.Rahman, N.Bishara, T.Ackerly et al., Nanomedicine, 5, 136 (2009). https://doi.org/10.1016/j.nano.2009.01.014
12. S.Jain, J.A.Coulter, A.R.Hounsell, Int. J. Radiat. Oncol. Biol. Phys., 79, 531 (2011). https://doi.org/10.1016/j.ijrobp.2010.08.044
13. Z.Z.Lim, J.E.Li, C.T.Ng, Acta Pharmacol. Sin., 32, 983 (2011). https://doi.org/10.1038/aps.2011.82
14. C.Le Sech, K.Kobayashi, N.Usami et al., Nanotechnology, 23, 078001 (2012). https://doi.org/10.1088/0957-4484/23/7/078001
15. H.E.Townley, J.Kim, P.J.Dobson, Nanoscale, 4, 5043 (2012). https://doi.org/10.1039/c2nr30769c
16. C.Mirjolet, A.L.Papa, G.Crehange et al., Radiother. Oncol., 108, 136 (2013). https://doi.org/10.1016/j.radonc.2013.04.004
17. J.Takahashi, M.Misawa, Nanobiotechnol., 3, 116 (2007). https://doi.org/10.1007/s12030-008-9009-x
18. W.Yang, P.W.Read, J.Mi et al., Int. J. Radiat. Oncol. Biol. Phys., 72, 633 (2008). https://doi.org/10.1016/j.ijrobp.2008.06.1916
19. V.Sharma, R.K.Shukla, N.Saxen, Toxicol. Lett., 185, 211 (2009). https://doi.org/10.1016/j.toxlet.2009.01.008
20. J.R.Gurr, A.S.Wang, Chen CH et al., Toxicology, 213, 66 (2005). https://doi.org/10.1016/j.tox.2005.05.007
21. E.A.Averchenko, N.S.Kavok, V.K.Klochkov et al., J. Appl. Spectr., 81, 754 (2014). https://doi.org/10.1007/s10812-014-0012-9
22. T.N.Tkacheva, S.L.Yefimova, V.K.Klochkov et al., J. Mol. Liq., 199, 244 (2014). https://doi.org/10.1016/j.molliq.2014.09.023
23. A.N.Goltsev, O.V.Chelombit'ko, N.N.Babenko et al., Ann.Oncology, 25, 569 (2014). https://doi.org/10.1093/annonc/mdu359.20
24. A.N.Goltsev, N.N.Babenko, Y.A.Gaevskaya et al., Nanoscale Res. Lett., 12, 415 (2017). https://doi.org/10.1186/s11671-017-2175-9
25. E.M.Mamotyuk, V.K.Klochkov, G.V.Grygorova et al., NATO Science for Peace and Security Series A: Chemistry and Biology, 193 (2015).
26. V.K.Klochkov, J. Photoch. Photobio. A., 310, 128 (2015). https://doi.org/10.1016/j.jphotochem.2015.05.019
27. V.K.Klochkov, A.I.Malyshenko, O.O.Sedyh et al., Functional Materials, 1, 111 (2011).
28. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh et al., Coll. Surf., A: Physicochem., Eng. Aspects, 409, 176 (2012). https://doi.org/10.1016/j.colsurfa.2012.06.019
29. A.Bulin, A.Vasil'ev, A.Belsky et al., Nanoscale, 9, 5744 (2015). https://doi.org/10.1039/C4NR07444K