Вы здесь

Funct. Mater. 2018; 25 (2): 294-299.

doi:https://doi.org/10.15407/fm25.02.294

Induction and inhibition of free radicals by the GdVO4:Eu3+ and CeO2 nanoparticles under X-ray irradiation

V.K.Klochkov, O.O.Sedyh, G.V.Grygorova, O.G.Viagin, A.D.Opolonin, Yu.V.Malyukin

Institute for Scintillation Materials, STC Institute for Single Crystals National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The effect of aqueous colloidal solutions of GdVO4:Eu3+ and CeO2 nanoparticles on the efficiency of generation or inhibition of free radicals under X-ray irradiation was studied. It is shown that gadolinium orthovanadate acts as a free radical generator, and cerium dioxide as an inhibitor.

Keywords: 
orthovanadate, cerium dioxide, nanoparticles, X-ray irradiation, free radicals.
References: 

1. R.Ranganathan, S.Madanmohan, A.Kesavan et al., Int. J. Nanomedicine, 7, 1043 (2012).

2. F.Danhier, O.Feron, V.Preat, J. Control Release, 148, 135 (2010).

3. T.Sun, Y.S.Zhang, B.Pang et al., Angew Chem. Int. Ed Engl., 53, 12320 (2014).

4. J.F.Hainfeld, F.A.Dilmanian, D.N.Slatkin et al., J. Pharm. Pharmacol., 60, 977 (2008).

5. D.Kwatra, A.Venugopal, S.Anant, Transl Cancer Res., 2, 330 (2013).

6. E.Porcel, S.Li, N.Usami et al., J. Phys. Conf. Ser., 373, 012006 (2012).

7. C.J.Liu, C.H.Wang, S.T.Chen et al., Phys. Med. Biol., 55, 931 (2010).

8. J.F.Hainfeld, D.N.Slatkin, H.M.Smilowitz, Phys. Med. Biol., 49, 309 (2004).

9. J.Ni, Q.Wu, Y.Li et al., J. Nanopart. Res., 10, 643 (2008).

10. E.Oberdorster, Environ Health Perspect., 112, 1058 (2004).

11. W.N.Rahman, N.Bishara, T.Ackerly et al., Nanomedicine, 5, 136 (2009).

12. S.Jain, J.A.Coulter, A.R.Hounsell, Int. J. Radiat. Oncol. Biol. Phys., 79, 531 (2011).

13. Z.Z.Lim, J.E.Li, C.T.Ng, Acta Pharmacol. Sin., 32, 983 (2011).

14. C.Le Sech, K.Kobayashi, N.Usami et al., Nanotechnology, 23, 078001 (2012).

15. H.E.Townley, J.Kim, P.J.Dobson, Nanoscale, 4, 5043 (2012).

16. C.Mirjolet, A.L.Papa, G.Crehange et al., Radiother. Oncol., 108, 136 (2013).

17. J.Takahashi, M.Misawa, Nanobiotechnol., 3, 116 (2007).

18. W.Yang, P.W.Read, J.Mi et al., Int. J. Radiat. Oncol. Biol. Phys., 72, 633 (2008).

19. V.Sharma, R.K.Shukla, N.Saxen, Toxicol. Lett., 185, 211 (2009).

20. J.R.Gurr, A.S.Wang, Chen CH et al., Toxicology, 213, 66 (2005).

21. E.A.Averchenko, N.S.Kavok, V.K.Klochkov et al., J. Appl. Spectr., 81, 754 (2014).

22. T.N.Tkacheva, S.L.Yefimova, V.K.Klochkov et al., J. Mol. Liq., 199, 244 (2014).

23. A.N.Goltsev, O.V.Chelombit'ko, N.N.Babenko et al., Ann.Oncology, 25, 569 (2014).

24. A.N.Goltsev, N.N.Babenko, Y.A.Gaevskaya et al., Nanoscale Res. Lett., 12, 415 (2017).

25. E.M.Mamotyuk, V.K.Klochkov, G.V.Grygorova et al., NATO Science for Peace and Security Series A: Chemistry and Biology, 193 (2015).

26. V.K.Klochkov, J. Photoch. Photobio. A., 310, 128 (2015).

27. V.K.Klochkov, A.I.Malyshenko, O.O.Sedyh et al., Functional Materials, 1, 111 (2011).

28. V.K.Klochkov, A.V.Grigorova, O.O.Sedyh et al., Coll. Surf., A: Physicochem., Eng. Aspects, 409, 176 (2012).

29. A.Bulin, A.Vasil'ev, A.Belsky et al., Nanoscale, 9, 5744 (2015).

Current number: