Вы здесь

Funct. Mater. 2018; 25 (2): 300-307.

doi:https://doi.org/10.15407/fm25.02.300

Comparative effects of stearic acid, calcium and magnesium stearates as dopants in model lipid membranes

O.V.Vashchenko, N.A.Kasian, L.V.Budianska

Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Comparative studies are reported for calcium and magnesium stearates as well as for stearic acid introduced as dopants in model lipid membranes, both individually and in pairs with cycloserine. Membranotropic effects of the dopants were detected on the basis of complex analysis of phase transition parameters obtained by means of differential scanning calorimetry. The individual membranotropic effects increase in order: CaSt < MgSt < StA. It was established that cycloserine extends the temperature range of the membrane ripple phase, unlike the other substances studied. Joint addition of each stearate with cycloserine resulted in a previously unknown synergic membranotropic effect reflected as additional elevation of phase transition temperatures with a non-additive concentration dependence. The synergic effect grows with dopants concentration and appears more pronounced for pre-transition than for main transition. Meanwhile, no synergic effect was observed for stearic acid with cycloserine, and the joint effects could be ranged as: CaSt≥ StA ~ 0.

Keywords: 
differential scanning calorimetry, calcium stearate, magnesium stearate, stearic acid, model lipid membrane, joint action.
References: 

1. Yu.B.Belousov, K.G.Gurevich, Clinic Pharmacology, Litterra, Moscow (2005) [in Russian].

2. Excipient Applications in Formulation Design and Drug Delivery, ed. by A.S.Narang, S.HS.Boddu, Springer International Publishing Switzerland (2015).

3. J.K.Seydel, M.Wiese, Drug-Membrane Interactions: Analysis, Drug Distribution, Modeling, Wiley-VCH Verlag, Weinheim (2002).

4. M.Lucio, J.L.F.C.Lima, S.Reis, Curr. Med. Chem., 17, 1795 (2010).

5. D.Lopes, S.Jakobtorweihen, C.Nunes et al., Progr. Lip. Res., 65, 24 (2017).

6. A.M.Seddon, D.Casey, R.V.Law et al., Chem. Soc. Rev., 38, 2509 (2009).

7. J.Knobloch, D.K.Suhendro, J.L.Zieleniecki et al., Saudi J. Biol. Sci., 22, 714 (2015).

8. A.O.Sadchenko, O.V.Vashchenko, A.Yu.Puhovkin et al., Biophysics, 62, 570 (2017).

9. Handbook of Pharmaceutical Excipients. ed. by R.C.Rowe, P.J.Sheskey, S.C.Owen., 6th Ed., Pharmaceutical Press, London-Chicago (2009).

10. B.D.Snyder, T.M.Polasek, M.P.Doogue, Austr. Prescr., 35, 85 (2012).

11. Technology and Standardization of Pharmaceuticals, v.2, ed. by V.P.Georgievskij and F.A.Konev, RIREG, Kharkov (2000) [in Russian].

12. A.P.Viktorov, V.G.Peredrij, A.V.Shcherbak. Interaction of Drugs with Foods, Zdorovja, Kyiv (1991) [in Russian].

13. Electronic resource https://chem.nlm.nih.gov/ chemidplus.

14. H.Binder, O.Zschornig, Chem. Phys. Lipids, 115, 39 (2002).

15. R.S.Vest, L.J.Gonzales, S.A.Permann et al., Biophys. J., 86, 2251 (2004).

16. A.Melcrova, S.Pokorna, S.Pullanchery et al., Sci. Rep., 6, 38035 (2016).

17. M.Prudent, M.A.Mendez, D.F.Jana et al., Metallomics, 2, 400 (2010).

18. Z.D.Schultz, I.M.Pazos, F.K.McNeil-Watson et al., J. Phys. Chem. B, 113, 9932 (2009).

19. A.V.Agafonov, E.N.Gritsenko, E.A.Shlyapnikova et al., J. Membr. Biol., 215, 57 (2007).

20. R.Zimmermann, D.Kuttner, L.Renner et al., J. Phys. Chem. A, 116, 6519 (2012).

21. M.O.Anikieieva, S.L.Rozanova, S.Ye.Kovalenko et al., J. Adhes. Sci. Tech., 29, 1039 (2016).

22. J.Wang, H.Wen, D.Desai, Eur. J. Pharm. Biopharm, 75, 1 (2010).

23. J.Li, Y.Wu, Lubricants, 2, 21 (2014).

24. Electronic Resource https://pubchem.ncbi.nlm.nih.gov/compound.

25. A.O.Sadchenko, O.V.Vashchenko, N.A.Kasian et al., Func. Mater., 23, 230 (2016).

26. V.G.Ivkov, G.N.Berestovskiy. Dynamic Structure of Lipid Bilayer, Moscow, Nauka (1981) [in Russian].

27. R.B.Gennis. Biomembranes. Molecular Structure and Functions, New York, Springer-Verlag (1989).

28. R.N.McElhaney, Chem. Phys. Lipids, 30, 229 (1982).

29. O.V.Vashchenko, L.V.Budianska, Biophys. Bull, 36, 11 (2016).

30. R.I.Romao, A.M.Goncalves da Silva, Chem. Phys. Lipids, 131, 27 (2004).

31. J.M.Seddon, R.H.Templer, N.A.Warrender et al., Biochim. Biophys. Acta, 1327, 131 (1997).

32. R.J.Webb, J.M.East, R.D.Sharma, A.G.Lee, Biochemistry, 37, 673 (1998).

33. H.Ohvo-Rekila, P.Mattjus, J.P.Slotte, Biochim. Biophys. Acta, 1372, 331 (1998).

34. R.Zidovetzki, A.W.Atiya, H.de Boeck, Mol. Membr. Biol., 8, 177 (1989).

35. V.F.Antonov, E.V.Shevchenko, Vestn. Ross. Akad. Med. Nauk, 48 (1995).

36. K.N.Belosludtsev, N.V.Belosludtseva, A.V.Agafonov et al., BBA, 1838, 2600 (2014).

37. K.N.Belosludtsev, N.V.Belosludtseva, K.S.Tenkov et al., BBA, doi: 10.1016/ j.bbamem.2017.09.018 (2017).

38. N.A.Kasian, V.A.Pashynska, O.V.Vashchenko, Mol. BioSyst., 10, 3155 (2014).

39. V.N.Danilin, S.P.Dotsenko, A.V.Martsinkovskiy, S.G.Shabalina, Rus. J. Phys. Chem. A, 75, 18 (2001).

40. P.Losada-Perez, N.Mertens, B.de Medio-Vasconcelos et al., Adv. Cond. Matter Phys., Article ID 479318 (2015).

41. T.-C.Chou, Cancer Res., 70, 440 (2010).

Current number: