Вы здесь

Funct. Mater. 2018; 25 (2): 337-341.

doi:https://doi.org/10.15407/fm25.02.337

Use of density functional theory for modeling optical properties of vacancy defects in nanoclusters of various SiC polytypes

O.A.Zhikol1, A.V.Luzanov1, I.V.Omelchenko1, A.L.Pushkarchuk2,3, V.A.Pushkarchuk4, A.P.Nizovstev5, S.Ya.Kilin5, T.V.Bezyazychnaya2, S.A.Kuten'3

1SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute of Physical Organic Chemistry, 13 Surganov Str., 220072 Minsk, Belarus
3Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Str., 220030 Minsk, Belarus
4Belarusian State University Informatics and Radioelectronics, 6 P.Brovka Str., 220013 Minsk, Belarus
5B.I.Stepanov Institute of Physics, 68 Nezavisimosti Ave., 220072 Minsk, Belarus

Abstract: 

We studied electronic properties of the ground and lowest excited states of SiC defective nanoclusters falling into 3C, 2H and 4H polymorphic types. The standard time-dependent DFT method was used along with the economical model-core-potential approximation. Basing on our earlier works, we performed the corresponding excited state structural analysis and show for the lowest triplet-triplet ransition a significant effect of excitation localization in the defect vicinity.

Keywords: 
nanoparticles, carborundum polytypes, density functional theory, TDDFT, model core potentials, excited state localization.
References: 

1. J.Wrachtrup, F.Jelezko, J. Phys.:Condens. Matter., 18, S807 (2006).

2. J.Fan, P.K.Chu, Silicon Carbide Nanostructures: Fabrication, Structure, Springer, Berlin (2014).

3. Optical Engineering of Diamond, ed. by C.R.P.Mildren, J.R.Rabeau, Wiley, Berlin (2013).

4. P.Potasz, M.Korkusinski, P.Hawrylak, Graphene Quantum Dots, Springer-Verlag Berlin Heidelberg (2014).

5. Quantum Information Processing with Diamond, ed. by S.Prawer, I.Aharonovich, Elsevier LTD, Cambridge (2014).

6. A.L.Falk, B.B.Buckley, G.Calusine et al., Nature Commun., 4, 1819 (2013).

7. V.A.Soltamov, P.G.Baranov, Uspechi Fiz. Nauk, 59, 605 (2016).

8. H.Seo, A.L.Falk, P.V.Klimov et al., Nature Commun., 7, 12935 (2016).

9. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.

10. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).

11. A.P.Nizovtsev, S.Ya.Kilin, A.L.Pushkarchuk et al., New J. Phys., 16, 083014 (2014).

12. A.P.Nizovstev, A.Pushkarchuk, S.A.Kuten et al., Proc. Nat. Acad. Sci. Belarus. Phys. Math Ser., No. 1, 98 (2017).

13. A.V.Luzanov, O.A.Zhikol, Functional Materials, 23, 63 (2016).

14. A.V.Luzanov, O.A.Zhikol, I.V.Omelchenko et al., Functional Materials, 23, 268 (2016).

15. A.V.Luzanov, Functional Materials, 24, 127 (2017).

16. A.V.Luzanov, Functional Materials, 24, 434, (2017).

17. Fundamentals of Time-dependent Density-functional Theory, ed. by M.A.L.Marques, N.Maitra et al., Lecture Notes in Physics, Springer, Berlin (2012).

18. I.G.Kaplan, The Pauli Exclusion Principle: Origin, Verifications and Applications, John Wiley & Sons, Chichester (2017).

19. A.V.Luzanov, Russ. Chem. Rev., 49, 1033 (1980).

20. A.V.Luzanov, O.A.Zhikol, Int. J. Quantum Chem., 110, 902 (2010).

21. A.V.Luzanov, O.A.Zhikol, in: Practical Aspects of Computational Chemistry I, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2012), p.415.

23. L.Gordon, A.Janotti, C.G.Van de Walle, Phys. Rev. B, 92, 045208 (2015).

24. M.Klobukowski, S.Huzinaga, Y.Sakai, in: Computational Chemistry: Reviews of Current Trends, Vol.3, ed. by J.Leszczynski, World Scientific, Singapore (1999), p,49.

25. T.Yanai, D.P.Tew, N.C.Handy, Chem. Phys. Lett., 393, 31 (2004).

26. R.Peverati, D.P.Truhlar, J. Phys. Chem. Lett., 2, 2810 (2011).

27. M.W.Schmidt, K.K.Baldrige, J.A.Boatz et al., J. Comput. Chem., 14, 1347 (1993).

28. M.Lannoo, J.Bourgoin, Point Defects in Seiconductors. I.Theoretical Aspects, Springer, Berlin (1981).

29. A.V.Luzanov, Functional Materials, 23, 596 (2016).

Current number: