Вы здесь

Funct. Mater. 2018; 25 (2): 337-341.


Use of density functional theory for modeling optical properties of vacancy defects in nanoclusters of various SiC polytypes

O.A.Zhikol1, A.V.Luzanov1, I.V.Omelchenko1, A.L.Pushkarchuk2,3, V.A.Pushkarchuk4, A.P.Nizovstev5, S.Ya.Kilin5, T.V.Bezyazychnaya2, S.A.Kuten'3

1SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Institute of Physical Organic Chemistry, 13 Surganov Str., 220072 Minsk, Belarus
3Institute for Nuclear Problems, Belarusian State University, 11 Bobruiskaya Str., 220030 Minsk, Belarus
4Belarusian State University Informatics and Radioelectronics, 6 P.Brovka Str., 220013 Minsk, Belarus
5B.I.Stepanov Institute of Physics, 68 Nezavisimosti Ave., 220072 Minsk, Belarus


We studied electronic properties of the ground and lowest excited states of SiC defective nanoclusters falling into 3C, 2H and 4H polymorphic types. The standard time-dependent DFT method was used along with the economical model-core-potential approximation. Basing on our earlier works, we performed the corresponding excited state structural analysis and show for the lowest triplet-triplet ransition a significant effect of excitation localization in the defect vicinity.

nanoparticles, carborundum polytypes, density functional theory, TDDFT, model core potentials, excited state localization.

1. J.Wrachtrup, F.Jelezko, J. Phys.:Condens. Matter., 18, S807 (2006). https://doi.org/10.1088/0953-8984/18/21/S08

2. J.Fan, P.K.Chu, Silicon Carbide Nanostructures: Fabrication, Structure, Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-08726-9

3. Optical Engineering of Diamond, ed. by C.R.P.Mildren, J.R.Rabeau, Wiley, Berlin (2013). https://doi.org/10.1002/9783527648603

4. P.Potasz, M.Korkusinski, P.Hawrylak, Graphene Quantum Dots, Springer-Verlag Berlin Heidelberg (2014).

5. Quantum Information Processing with Diamond, ed. by S.Prawer, I.Aharonovich, Elsevier LTD, Cambridge (2014).

6. A.L.Falk, B.B.Buckley, G.Calusine et al., Nature Commun., 4, 1819 (2013). https://doi.org/10.1038/ncomms2854

7. V.A.Soltamov, P.G.Baranov, Uspechi Fiz. Nauk, 59, 605 (2016). https://doi.org/10.3367/UFNe.2016.02.037755

8. H.Seo, A.L.Falk, P.V.Klimov et al., Nature Commun., 7, 12935 (2016). https://doi.org/10.1038/ncomms12935

9. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151.

10. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017). https://doi.org/10.1063/1.4975196

11. A.P.Nizovtsev, S.Ya.Kilin, A.L.Pushkarchuk et al., New J. Phys., 16, 083014 (2014). https://doi.org/10.1088/1367-2630/16/8/083014

12. A.P.Nizovstev, A.Pushkarchuk, S.A.Kuten et al., Proc. Nat. Acad. Sci. Belarus. Phys. Math Ser., No. 1, 98 (2017).

13. A.V.Luzanov, O.A.Zhikol, Functional Materials, 23, 63 (2016). https://doi.org/10.15407/fm23.01.063

14. A.V.Luzanov, O.A.Zhikol, I.V.Omelchenko et al., Functional Materials, 23, 268 (2016). https://doi.org/10.15407/fm23.02.268

15. A.V.Luzanov, Functional Materials, 24, 127 (2017). https://doi.org/10.15407/fm24.01.127

16. A.V.Luzanov, Functional Materials, 24, 434, (2017). https://doi.org/10.15407/fm24.03.434

17. Fundamentals of Time-dependent Density-functional Theory, ed. by M.A.L.Marques, N.Maitra et al., Lecture Notes in Physics, Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-23518-4

18. I.G.Kaplan, The Pauli Exclusion Principle: Origin, Verifications and Applications, John Wiley & Sons, Chichester (2017).

19. A.V.Luzanov, Russ. Chem. Rev., 49, 1033 (1980). https://doi.org/10.1070/RC1980v049n11ABEH002525

20. A.V.Luzanov, O.A.Zhikol, Int. J. Quantum Chem., 110, 902 (2010).

21. A.V.Luzanov, O.A.Zhikol, in: Practical Aspects of Computational Chemistry I, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2012), p.415.

23. L.Gordon, A.Janotti, C.G.Van de Walle, Phys. Rev. B, 92, 045208 (2015). https://doi.org/10.1103/PhysRevB.92.045208

24. M.Klobukowski, S.Huzinaga, Y.Sakai, in: Computational Chemistry: Reviews of Current Trends, Vol.3, ed. by J.Leszczynski, World Scientific, Singapore (1999), p,49.

25. T.Yanai, D.P.Tew, N.C.Handy, Chem. Phys. Lett., 393, 31 (2004). https://doi.org/10.1016/j.cplett.2004.06.011

26. R.Peverati, D.P.Truhlar, J. Phys. Chem. Lett., 2, 2810 (2011). https://doi.org/10.1021/jz201170d

27. M.W.Schmidt, K.K.Baldrige, J.A.Boatz et al., J. Comput. Chem., 14, 1347 (1993). https://doi.org/10.1002/jcc.540141112

28. M.Lannoo, J.Bourgoin, Point Defects in Seiconductors. I.Theoretical Aspects, Springer, Berlin (1981). https://doi.org/10.1007/978-3-642-81574-4

29. A.V.Luzanov, Functional Materials, 23, 596 (2016). https://doi.org/10.15407/fm23.04.420

Current number: