Funct. Mater. 2018; 25 (2): 348-352.

doi:https://doi.org/10.15407/fm25.02.348

Factors influencing on obtaining a light output homogeneous distribution along long-length detectors based on CsI(Tl) scintillators

D.I.Zosim

Institute for Scintillation Materials, STC Institute for Single Crystals National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

The role of matting the long-dimension scintillators based on CsI(Tl) single crystals for achieving a homogeneous distribution of light output along their length was studied. It was shown that he matting of scintillators resulted in developing roughness on their surface and in violating the optical homogeneity which is manifested in the appearance of birefringence bands. It is established that the maximum homogeneity of the distribution of the light output along long-length detectors is achieved due to the interaction of the light of scintillations with the regions of the crystal in which the optical characteristics differ from those in the neighboring space with these regions.

Keywords: 
CsI(Tl) long-length scintillators, matting, homogeneity of distribution of light output.
References: 

1. R.B.Murray, A.Mayer. Phys.Rew.,122, 15, 1961. 2. Bondarenko S. et al. Nucl. Instrum. Meth. A486, 474, 2002.

3. A. Wagner et al. Nucl. Instrum. Meth. A456, 290, 2001. https://doi.org/10.1016/S0168-9002(00)00542-8

4. Stefan Diehl, Kai-Thomas Brinkmann et al. 17th Int. Conf. Calorimetr. Particle Physics (CALOR2016). IOP Conf. Series Journal of Physics: Conf. Series, 928, 012040, 2017. doi :10.1088/1742-6596/928/1/012040 https://doi.org/10.1088/1742-6596/928/1/012040

5. Martin Gascon, Hector Alvarez-Pol, Sebastien Ancelin et all. Characterization of Large Frustum CsI(Tl) Crystals for the R3B Calorimeter. IEEE Trans. Nuclear Scie., 56, 962, 2009. https://doi.org/10.1109/TNS.2009.2013343

6. M.-J. van Goethem, M.S. Wallace et al. Nucl. Instr. Meth. A 526, 455, 2004 https://doi.org/10.1016/j.nima.2004.02.038

7. Patent USA 3102955

8. M.E.Globus, B.V.Grinyov. Inorganic scintillators, Kharkov, AKTA Publ., 2000, P.402 [in Russian].

9. V.I.Gorileckij, B.V. Grinev, B.G. Zaslavskij, Rost Kristallov [Crystal Growth]. Kharkov, AKTA Publ., 2002, P.535 [ in Russian]

10. V.I.Goryletskiy, Instr. Exper. Techn., 43, 2, 2000.

11. Kudin A.M. et al. Vopr. Atom. Nauki Techn. 80, 111, 2001.

12. http://www.sugan.com.ua

13. Yu.A.Cirlin, E.P. Mohir, Monokristalli, Scintillatory, i organicheskie Lyuminofori. Kharkov. Monokristall., 1,67, 1967.

14. J.Sharpe, IRE Transaction, NS-7, 2-3, 44, 1960.

15. Yu.A.Nemilov, et al. Izv. AN SSSR. ser. Fizika, 23, 1959.

16. P.Lecoq, A. Gektin, M. Korzhik. Inorganic Scintillators for Detector Systems: Physical Principles and Crystal Engineering. Springer International Publishing Switzerland, 2017. https://doi.org/10.1007/978-3-319-45522-8

17. O.Madelung. Introduction to solid-state theory. Translated by B.C.Taylor. Springer-Verlag Berlin Heidelberg New York. 1978. https://doi.org/10.1007/978-3-642-61885-7

18. Liapidevskii V.K. Metodi detectirovanija izluchenii. M. Energoatomizdat.1987, P.408.

19. V.D. Alekseyev, L.N. Trefilova i dr. Izv. VUZ. Fizika.1-2, 12, 2011.

20. V. Savenko, E. D. Shchukin,Colloid Journal. 69, 782, 2007. https://doi.org/10.1134/S1061933X07060154

21. Yu.A.Cirlin, Cvetosobiranie v scintillacionnih schetchikah, Atomizdat, M., 1975.

Current number: