Вы здесь

Funct. Mater. 2018; 25 (2): 364-370.

doi:https://doi.org/10.15407/fm25.02.364

Application of slag refining technique to metallurgical grade silicon purification process: A review

Rowaid Al-khazraji1,2, Yaqiong Li, Lifeng Zhang1,2

1 School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
2 Beijing Key Laboratory of Green Recycling and Extraction of Metal, University of Science & Technology Beijing, Beijing 100083

Abstract: 

The photovoltaic generates electricity through direct conversion of sunlight, has fast-growing recently due to high global energy demand. Photovoltaic main material is silicon which needs refining process to fulfill the requirements. In this paper, the principle of silicon-slag refining was introduced and several types of imposing slag were reviewed. Boron removal from silicon using Si-based alloy and novel slag with active component were mentioned, and effects of slag refining processing parameters were discussed. According to the investigations, slag refining technique can remove a large amount of boron from MG-Si, and the potential industrial applications of slag refining technique were proposed.

Keywords: 
solar grade silicon, metallurgical grade silicon, slag refining, B removal.
References: 

1. C.Xu, C.Pan, Y.Liu, Z. L.Wang, Nano Energy, 1, 259 (2012). https://doi.org/10.1016/j.nanoen.2012.01.002

2. M. Martorano, J. F. Neto, T. Oliveira, T. Tsubaki, Mater. Scie. Eng.: B, 176, 217 (2011). https://doi.org/10.1016/j.mseb.2010.11.010

3. S. Sun, Y. Tan, W. Dong, H. Zhang, J. Zhang, J. Mater. Eng. Perform., 21, 854 (2012).

4. I. Santos et al., Hydrometall., 23, 237 (1990). https://doi.org/10.1016/0304-386X(90)90007-O

5. V. Lashgari, H. Yoozbashizadeh, ASM Scie.J., 1, 37 (2007).

6. Z. Yin, A. Oliazadeh, S. Esfahani, M. Johnston, M. Barati, Canadian Metall. Quart., 50, 166 (2011). https://doi.org/10.1179/000844311X12949307643551

7. S. Esfahani, M. Barati, Met. Mater. Int., 17, 1009 (2011). https://doi.org/10.1007/s12540-011-6020-x

8. K. Hanazawa, N. Yuge, Y. Kato, Mater. Trans., 45, 844 (2004). https://doi.org/10.2320/matertrans.45.844

9. K. Hanazawa, N. Yuge, S. Hiwasa, Y. Kato, J.Japan Inst.Metal., 67, 569 (2003). https://doi.org/10.2320/jinstmet1952.67.10_569

10. M. Johnston, M. Barati, Sol. Energy Mater.Sol. Cells, 94, 2085 (2010). https://doi.org/10.1016/j.solmat.2010.06.025

11. M. D. Johnston, L. T. Khajavi, M. Li, S. Sokhanvaran, M. Barati, JOM, 64, 935 (2012). https://doi.org/10.1007/s11837-012-0384-3

12. A. M. Mitrinov, T. A. Utigard, Silicon, 1, 239 (2009). https://doi.org/10.1007/s12633-009-9025-z

13. B.R.Bathey, M.C.Cretella, J. Mater. Sci., 17, 3077 (1982). https://doi.org/10.1007/BF01203469

14. J.J.Wu, Y.Bin, Y.DAI, K.Morita, Trans.Nonferr Met. Soc. China, 19, 463 (2009). https://doi.org/10.1016/S1003-6326(08)60296-4

15. E. T. Turkdogan, (1980).

16. L. A. V.Teixeira, K.Morita, ISIJ Int.

, 49, 783 https://doi.org/10.2355/isijinternational.49.783

Current number: