Funct. Mater. 2018; 25 (2): 381-385.

doi:https://doi.org/10.15407/fm25.02.381

Crystallization kinetics of calcium oxalate monohydrate in he presence of amino acids

Y.V.Taranets, O.N.Bezkrovnaya, I.M.Pritula

Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

Studied is the effect of L-aspartic acid (L-Asp), L-arginine (L-Arg) and L-threonine (L-Thr) on the crystallization kinetics of calcium oxalate monohydrate (COM). L-Asp and L-Arg amino acids exert an inhibitory effect on COM crystallization. Addition of 1-20 mM of L-Asp and L-Arg to the calcium oxalate model system increases the induction time in comparison with that of pure COM by 3-10 and 1.3-6 times, respectively. The degree of inhibition of COM crystallization is 86.0 % (for 20 mM of L-Arg) and 90.2 % (for 20 mM of L-Asp) due to high adsorption capacity of these molecules on COM crystal faces. L-Thr amino acid is a promoter of COM crystallization; the induction time is reduced by 2 times as against that of pure microcrystals.

Keywords: 
calcium oxalate monohydrate, spectrophotometry, nucleation, L-spartic acid, L-arginine, L-threonine.
References: 

1. L.Tunik, L.Addadi, N.Garti et al., J. Cryst. Growth, 167, 748 (1996). https://doi.org/10.1016/0022-0248(96)00315-6

2. P.Bhadja, J.Lunagariya, J.-M.Ouyang, J. Funct. Foods, 27, 685 (2016). https://doi.org/10.1016/j.jff.2016.10.016

3. Sh.Guo, M.D.Ward, J.A.Wesson, Langmuir, 18, 4284 (2002). https://doi.org/10.1021/la011754+

4. F.Grases, J.G.March, F.Bibiloni et al., J. Cryst. Growth, 87, 299 (1988). https://doi.org/10.1016/0022-0248(88)90179-0

5. T.Sugimoto, Y.Funae, H.Rubben et al., Eur. Urol., 11, 334 (1985). https://doi.org/10.1159/000472531

6. J.He, R.Lin, H.Long et al., J. Colloid Interface Sci., 454, 144 (2015). https://doi.org/10.1016/j.jcis.2015.02.014

7. C.Hennequin, V.Lalanne, M.Daudon et al., Urol. Res., 21, 101 (1993). https://doi.org/10.1007/BF01788827

8. D.R.Lide, CRC Handbook of Chemistry and Physics, 90th Edition, CRC Press, Boca Raton, FL (2010).

9. D.E.Fleming, W.Bronswijk, R.L.Ryall, Clin. Sci., 101, 159 (2001). https://doi.org/10.1042/cs1010159

10. P.Kavanagh, L.Jones, P.N.Rao, Urol. Res., 27, 231 (1999). https://doi.org/10.1007/s002400050115

11. Y.Ogawa, T.Miyazato, T.Hatano, J. Surg., 24, 1154 (2000)].

12. Y.V.Taranets, O.N.Bezkrovnaya, I.M.Pritula et al., Nanosist. Nanomater. Nanotehnol., 14, 445 (2016) (in Russian).

13. S.Kumar, S.B.Rai, Indian J. Pure Appl. Phys., 48, 251 (2010).

14. Y.V.Taranets, O.N.Bezkrovnaya, I.M.Pritula et al., J. Nanomat. and Mol. Nanotechnol., 6, 1000229 (2017).

15. P.A.Antinozzi, C.M.Brown, D.L.Purich, J. Cryst. Growth, 125, 215 (1992). https://doi.org/10.1016/0022-0248(92)90335-G

16. S.Saha, R.J.Verma, J. Herbal Medic., 5, 41 (2015). https://doi.org/10.1016/j.hermed.2014.11.001

17. G.Dezelic, N.Dezelic, B.A.Tezac, J. Coll. Sci., 18, 888 (1963). https://doi.org/10.1016/0095-8522(63)90082-5

18. D.H.Melik, H.S.Fogler, J Coll. Interf. Sci., 92, 161 (1983). https://doi.org/10.1016/0021-9797(83)90125-X

19. P.M.Kruglyakov, Hydrophile-Lipophile Balance of Surfactants and Solid Particles: Physicochemical Aspects and Applications, Elsevier, New York (2000).

Current number: