Вы здесь

Funct. Mater. 2018; 25 (2): 397-400.


Determination of cerium valent state in solution of CeO2-x nanoparticles


STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine


Determination of different valence forms cerium in solution of CeO2-x nanoparticles was performed using spectrophotometric method. Ce(IV) was determined from the reaction of o-tolidine oxidation in sulfuric-acid medium. The total cerium concentration was determined after reducing Ce(IV) by sodium oxalate. In the capacity of reagent, there was used chlorophosphonazo III which formed he complex of the composition of 1:1 with cerium(III). The influence of sodium citrate, the stabilizer of the nanoparticles, in cerium determination, was studied. There were developed reliable and sensitivite echniques for determination of Ce(IV) and the total cerium mass concentrations in the solution of CeO2-x nanoparticles. Relative standard deviations at of the cerium determination were found not to exceed 0.05.

cerium(III), cerium(IV), o-tolidine, chlorophosphonazo III, nanoparticles CeO<sub>2-x</sub>, spectrophotometry.

1. X.Gao, Y.Cui, R.M.Levenson et al., Nat. Biotechnol., 22, 969 (2004). https://doi.org/10.1038/nbt994

2. S.Link, M.A.El-Sayed, J. Phys. Chem. B, 103, 8410 (1999). https://doi.org/10.1021/jp9917648

3. J.J.Storhoff, A.A.Lazarides, C.A.Mirkin et al., J. Am. Chem. Soc., 122, 4640 (2000). https://doi.org/10.1021/ja993825l

4. V.K.Ivanov, A.B.Shcherbakov, A.V.Usatenko, Russ. Chem. Rev., 78, 855 (2009). https://doi.org/10.1070/RC2009v078n09ABEH004058

5. A.E.Baranchikov, O.S.Polezhaeva, V.K.Ivanov et al., Cryst. Eng. Comm., 12, 3531 (2010). https://doi.org/10.1039/c0ce00245c

6. V.K.Ivanov, O.S.Polezhaeva, A.B.Shcherbakov et al., Russ. J. Inorg. Chem., 55, 3 (2010).

7. A.B.Shcherbakov, V.K.Ivanov, N.M.Zholobak et al., Biophysics, 56, 995 (2011). https://doi.org/10.1134/S0006350911060170

8. A.O.Stoianov, V.P.Antonovich, A.B.Shcherbakov et al., Bull. ONU. Chemistry, 17, 15 (2012).

9. O.V.Gayduk, R.P.Pantaler, A.B.Blank, Zavodskaya Laboratoriya, Diagnostika Materialov, 72, 12 (2006).

10. A.O.Stoianov, V.K.Ivanov, A.B.Shcherbakov et al., Russ. J. Inorg. Chem., 59, 139 (2014). https://doi.org/10.1134/S0036023614020181

11. O.V.Gayduk, R.P.Pantaler, A.B.Blank, Functional Materials, 12, 69 (2005).

12. O.V.Gayduk, L.V.Gudzenko, T.I.Ivkova et al., Bull. KhNU. Chemistry, 16, 15 (2008).

13. G.Grygorova, V.Klochkov, Ye.Mamotyuk, Yu.Malyukin, in: Nanomaterials for Security. NATO Series A: Chemistry and Biology, ed. by J.Bonca, S.Kruchinin, Springer, Dordrecht (2016), p.289. https://doi.org/10.1007/978-94-017-7593-9_23

14. D.I.Rjabchikov, V.A.Rjabuhin, Analytical Chemistry of Rare-earth Elements and Yttrium, Nauka, Moscow (1966) [in Russian].

15. P.P.Korostelev, Reagents and Solutions in Metallurgical Analysis, Metallurgy, Moscow (1977) [in Russian].

16. J.W.O'Laughlin, D.F.Jensen, Talanta, 17, 329 (1970). https://doi.org/10.1016/0039-9140(70)80219-3

17. J.Vilimec, K.Jakubec, Microchem. J., 35, 325 (1987). https://doi.org/10.1016/0026-265X(87)90118-4

18. O.V.Gayduk, R.P.Pantaler, A.B.Blank, Functional Materials, 13, 435 (2006).

19. O.V.Gayduk, R.P.Pantaler, A.B.Blank, Zavodskaya Laboratoriya. Diagnostika Materialov, 73, 15 (2007).

Current number: