Вы здесь

Funct. Mater. 2018; 25 (2): 406-412.

doi:https://doi.org/10.15407/fm25.02.406

A new stress-based multiaxial high-cycle fatigue damage criterion

Xin Li1, Jianwei Yang2, Dechen Yao2

1 School of Mechanical-electronic and Automobile Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2 Beijing Key Laboratory of Performance Guarantee on Urban Rail Transit Vehicles, School of Machine-electricity and Automobile Engineering, Beijing University of Civil Engineering and Architecture

Abstract: 

A new stress-based high-cycle fatigue damage criterion for multiaxial load cases, D = αDσβDτγ is presented. This criterion is based on a critical plane approach that the damage parameter is a function of normal stress amplitude and shear stress amplitude on critical plane of maximum shear stress range. The coefficient α, β and γ in the damage function are material parameters. Tensions with torsion test data are required to ascertain these coefficients. This criterion matches the test results well and shows accurate predictions of fatigue failure life compared to some present methods.

Keywords: 
Multiaxial high-cycle fatigue; critical plane; stress-based fatigue analysis.
References: 

1. Y.S. Garud. J Test Eval, 9, 165, 1981.

2. A. Karolczuk, E. Macha, Int J Fract, 134, 267, 2005. https://doi.org/10.1007/s10704-005-1088-2

3. W.N. Findly, J Eng Ind, 9, 301, 1959

4. F.B.Stulen, H.N. Cummings Proceedings of the ASTM, 54, 822, 1954.

5. D.L.McDiarmid, Fatigue under out-of-phase biaxial stresses of different frequencies. In: Miller K.J. and Brown M.W .(eds) Mutliaxial fatigue ASTM STP 853. Philadelphia: ASTM, 1985, pp. 606-621. https://doi.org/10.1520/STP36245S

6. G. Rashed, R. Ghajar,G., J Mech. Sci. Techn., 21, 1153 2007.

7. H. Chen, D.G. Shang, Y.J. Tian, et al. J Mech. Sci. Techn., 26, 3439, 2012. https://doi.org/10.1007/s12206-012-0872-y

8. R.N. Smith, P. Watson, T.H.Topper, J Mater, 5, 767, 1970.

9. C.C. Chu, F.A.Conle, J.F.Bonnen, Mutliaxial stress-strain modeling and fatigue life prediction of SAE axle shafts. In: McDowell D,L, and Ellis R. (eds) Advances in multiaxial fatigue ASTM STP 1191. Philadelphia: ASTM, 1993, pp. 37-54.

10. R.C.Liu, A method based on a virtual strain-energy parameters for multiaxial fatigue. In: McDowell, DL and Ellis R (eds) Advances in multiaxial fatigue ASTM STP 1191. Philadelphia: ASTM, 1993, pp. 67-84.

11. G. Glinka, G.Shen, A.Plumtree, Fatigue Fract Eng Mater Struct,, 18, 37, 1995. https://doi.org/10.1111/j.1460-2695.1995.tb00140.x

12. S.B. Lee, A criterion for fully reversed out-of phase torsion and bending. In: Miller KJ and Brown MW (eds) Mutiaxial fatigue ASTM STP 853. Philadelphia: ASTM, 1985, pp. 553-568. https://doi.org/10.1520/STP36242S

13. L. Susmel, N. Petrone, Multiaxial fatigue life estimations for 6082-T6 cylindrical specimens under in-phase and out-of-phase biaxial loadings In: Carpinteri A et al. (eds), Biaxial/multiaxial fatigue and fracture. Oxford: Elsevier, 2002, pp. 83-104.

14. T. Zhao, Y. Jiang Y,. Int J Fatigue, 30, 834, 2008. https://doi.org/10.1016/j.ijfatigue.2007.07.005

15. G. Marquis, D. Society, Fatigue Fract Engng Mater Struct , 23, 293, 2000. https://doi.org/10.1046/j.1460-2695.2000.00291.x

16. T. Matake, Bull Jpn Soc Mech Eng, 20, 257, 2000. https://doi.org/10.1299/jsme1958.20.257

17. D.L. McDiarmid, Fatigue Fract Engng Mater Struct ,14, 429, 1991. https://doi.org/10.1111/j.1460-2695.1991.tb00673.x

18. D. Socie, Critical plane approaches for multiaxial fatigue damage assessment. In: McDowell D.L and Ellis R. (eds) Advances in multiaxial fatigue ASTM STP 191. Philadelphia: ASTM, 1993, pp. 7-36. https://doi.org/10.1520/STP24793S

Current number: