Funct. Mater. 2018; 25 (3): 422-431.

doi:https://doi.org/10.15407/fm25.03.422

Model lipid bilayers as sensor bionanomaterials for characterization of membranotropic action of water-soluble substances

O.V.Vashchenko1, N.A.Kasian1, R.Ye.Brodskii2, L.V.Budianska1, D.S.Sofronov3, L.N.Lisetski1

1Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3SSI ISC, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Model phospholipid membranes are considered as sensor bionanomaterials to characterize water-soluble drugs of kosmotropic and chaotropic nature. Effects of kosmotropic agent dimethylsulfoxide (DMSO) and chaotropic tilorone on 1,2-dipalmitoylphosphatidylchoine multibilayer membranes were studied by differential scanning calorimetry and Fourier-transformed infrared spectroscopy. Tilorone and DMSO, water soluble hydrophilic substances, induced opposite shifts of membrane main phase transition temperatures ΔT, which were positive for DMSO (as a kosmotropic dopant) and negative for chaotropic tilorone. For both dopants, dependences of ΔT vs. dopant concentration c were obtained and fitted by an analogue of the Freundlich equation of adsorption, ΔT = kc1/n. A model has been proposed describing the action of hydrophilic dopants on lipid bilayer in terms of additional lateral pressure P(c), which is positive for kosmotropes and negative for chaotropes. Applying the Clapeyron-Clausius equation to establish the character of ΔT(c) relation, power-law dependence was obtained, which was in good agreement with our exrimental data. From comparison with literature data on Langmuir monolayers of similar systems, it was noted that the same power law relations could describe both phase transition temperature shifts and pressure-area dependences as function of dopant concentration.

Keywords: 
kosmotropes, chaotropes, model lipid membranes, phenomenological model, differential scanning calorimetry.
References: 

1. M.Bloom, E.Evans, O.G.Mouritsen, Quart. Rev. Biophys., 24, 293 (1991). https://doi.org/10.1017/S0033583500003735

2. R.Koynova, M.Caffrey, Biochim. Biophys. Acta, 1376, 91 (1998). https://doi.org/10.1016/S0304-4157(98)00006-9

3. J.F.Nagle, S.Tristram-Nagle, Biochim. Biophys. Acta, 1469, 159 (2000). https://doi.org/10.1016/S0304-4157(00)00016-2

4. H.Binder, Eur. Biophys. J., 36, 265 (2007). https://doi.org/10.1007/s00249-006-0110-6

5. C.Peetla, A.Stine, V.Labhasetwar, Mol. Pharm., 6, 1264 (2009). https://doi.org/10.1021/mp9000662

6. R.Pignatello, T.Musumeci, L.Basile et al., J. Pharm. Bioallied. Sci., 3, 4 (2011). https://doi.org/10.4103/0975-7406.76461

7. H.Li, T.Zhao, Z.Sun, Rev. Anal. Chem., 37.

8. K.A.Riske, C.C.Domingues, B.R.Casadei et al., Biophys. Rev., 9, 649 (2017). https://doi.org/10.1007/s12551-017-0310-6

9. P.Viswanath, A.Aroti, H.Motschmann, E.Leontidis, J. Phys. Chem. B, 113, 14816 (2009). https://doi.org/10.1021/jp906455k

10. C.Altunayar, I.Sahin, N.Kazanci, Chem. Phys. Lipids, 188, 37 (2015). https://doi.org/10.1016/j.chemphyslip.2015.03.006

11. O.V.Vashchenko, Iu.L.Iermak, A.O.Krasnikova, L.N.Lisetski, Biophysics, 60, 244 (2015). https://doi.org/10.1134/S0006350915020207

12. G.D.Bothun, L.Boltz, Y.Kurniawan, C.Scholz, Colloids Surf. B Biointerf., 139, 62 (2016). https://doi.org/10.1016/j.colsurfb.2015.11.054

13. A.C.Alves, D.Ribeiro, C.Nunes, S.Reis, Biochim. Biophys. Acta, 1858, 231 (2016).

14. C.M.G.Da Silva, M.Franz-Montan, C.E.G.Limia et al., PloS One, 12(10).

15. S.Tristram-Nagle, J.F.Nagle, Chem. Phys. Lipids, 127, 3 (2004). https://doi.org/10.1016/j.chemphyslip.2003.09.002

16. C.Bourgaux, P.Couvreur, J. Control. Release, 190, 127 (2014). https://doi.org/10.1016/j.jconrel.2014.05.012

17. Liquid Crystal Ordering and Nanostructuring in Model Lipid Membranes, ed. by V.A. Karachevtsev, Pan Stanford Publishing, Singapore (2016).

18. L.A.Bulavin, D.V.Soloviov, V.I.Gordeliy et al., Phase Trans., 88, 582 (2015). https://doi.org/10.1080/01411594.2014.1002784

19. A.O.Sadchenko, O.V.Vashchenko, N.A.Kasian, Functional Materials, 23, 230 (2016). https://doi.org/10.15407/fm23.02.230

20. K.D.Collins, Methods, 34, 300 (2004). https://doi.org/10.1016/j.ymeth.2004.03.021

21. G.E.Walrafen, J. Chem. Phys., 44, 3726 (1966). https://doi.org/10.1063/1.1726526

22. H.D.B.Jenkins, Y.Marcus, Chem. Rev., 95, 2695 (1995). https://doi.org/10.1021/cr00040a004

23. K.D.Collins, Proc. Natl. Acad. Sci. USA, 92, 5553 (1995). https://doi.org/10.1073/pnas.92.12.5553

24. K.D.Collins, Biophys. Chem., 119, 271 (2006). https://doi.org/10.1016/j.bpc.2005.08.010

25. R.Zangi, J. Phys. Chem. B, 114, 643 (2010). https://doi.org/10.1021/jp909034c

26. J.R.De Xammar Oro, J. Biol. Phys., 27, 73 (2001). https://doi.org/10.1023/A:1011890506834

27. E.A.Galinski, Experientia, 49, 487 (1993). https://doi.org/10.1007/BF01955150

28. T.H.Plumridge, R.D.Waigh, J. Pharm. Pharmacol., 54, 1155 (2002). https://doi.org/10.1211/002235702320402008

29. L.R.Singh, N.K.Poddar, T.A.Dar, J. Iran Chem. Soc., 8, 1 (2011). https://doi.org/10.1007/BF03246197

30. D.Shukla, C.P.Schneider, B.L.Trout, Adv. Drug Deliv. Rev., 63, 1074 (2011). https://doi.org/10.1016/j.addr.2011.06.014

31. S.Moelbert, B.Normand, P.De Los Rios, Biophys. Chem., 112, 45 (2004). https://doi.org/10.1016/j.bpc.2004.06.012

32. D.Russo, Chem. Phys. Lipids, 345, 200 (2008).

33. R.Koynova, J.Brankov, B.Tenchov, Eur. Biophys. J., 25, 261 (1997). https://doi.org/10.1007/s002490050038

34. E.R.Pennington, C.Day, J.M.Parker et al., J. Therm. Anal. Calorim., 123, 2611 (2016). https://doi.org/10.1007/s10973-016-5288-y

35. S.Ohtake, C.Schebor, S.P.Palecek, J.J.de Pablo, Biochim. Biophys. Acta, 1713, 57 (2005). https://doi.org/10.1016/j.bbamem.2005.05.001

36. S.Ohtake, C.Schebor, J.J.de Pablo, Biochim. Biophys. Acta, 1758, 65 (2006). https://doi.org/10.1016/j.bbamem.2006.01.002

37. R.Zimmermann, D.Kuttner, L.Renner et al., J. Phys. Chem. A, 116, 6519 (2012). https://doi.org/10.1021/jp212364q

38. O.V.Vashchenko, Yu.L.Ermak, L.N.Lisetski, Biophysics, 58, 515 (2013). https://doi.org/10.1134/S0006350913040180

39. M.T.Record Jr, W.Zhang, C.F.Anderson, Adv. Protein Chem., 51, 281 (1998). https://doi.org/10.1016/S0065-3233(08)60655-5

40. C.Wang, Y.Ge, J.Mortensen, P.Westh, J. Phys. Chem. B, 115, 9955 (2011). https://doi.org/10.1021/jp112203p

41. A.Aroti, E.Leontidis, M.Dubois, T.Zemb, Biophys. J., 93, 1580 (2007). https://doi.org/10.1529/biophysj.106.094482

42. S.Ekins, M.A.Lingerfelt, J.E.Comer, Antimicrob Agents Chemother, 62(2). DOI:10.1128/AAC.01711-17. (2018). https://doi.org/10.1128/AAC.01711-17

43. N.A.Kasian, V.A.Pashynska, O.V.Vashchenko, Mol. BioSyst., 10, 3155 (2014). https://doi.org/10.1039/C4MB00420E

44. U.Essmann, L.Perera, M.L.Berkowitz, Langmuir, 11, 4519 (1995). https://doi.org/10.1021/la00011a056

45. H.M.F.Freundlich, J. Phys. Chem. A, 57, 385 (1906).

45. H.M.F.Freundlich, J. Phys. Chem. A, 57, 385 (1906).

46. C.Selle, W.Pohle, Biospectroscopy, 4, 281 (1998). https://doi.org/10.1002/(SICI)1520-6343(1998)4:4<281::AID-BSPY6>3.0.CO;2-5

47. M.Ricci, R.Oliva, P.Del Vecchio, Biochim. Biophys. Acta, 1858, 3024 (2016). https://doi.org/10.1016/j.bbamem.2016.09.012

48. P.Sassi, S.Caponi, M.Ricci, J. Raman Spectr., 46, 644 (2015). https://doi.org/10.1002/jrs.4702

49. W.F.Wolkers, H.Oldenhof, B.Glasmacher, Cryobiology, 61, 108 (2010). https://doi.org/10.1016/j.cryobiol.2010.06.001

50. L.M.Crowe, J.H.Crowe, D.Chapman, Arch. Biochem. Biophys., 236, 289 (1985). https://doi.org/10.1016/0003-9861(85)90628-9

51. C.-Y.Cheng, J.Song, J.Pas et al., Biophys. J., 109, 330 (2015). https://doi.org/10.1016/j.bpj.2015.06.011

52. M.A.Kiselev, Crystallogr. Rep., 52, 529 (2007). https://doi.org/10.1134/S1063774507030352

53. M.A.Kiselev, T.Gutberlet, P.Lesieur et al., Chem. Phys. Lipids, 133, 181 (2005). https://doi.org/10.1016/j.chemphyslip.2004.10.002

54. D.Marsh, Biochim. Biophys. Acta, 1286, 183 (1996). https://doi.org/10.1016/S0304-4157(96)00009-3

55. R.Hartkamp, T.C.Moore, C.R.Iacovella et al., J. Phys. Chem. B, 122, 3113 (2018). https://doi.org/10.1021/acs.jpcb.8b00747

56. A.Aroti, E.Leontidis, E.Maltseva, G.Brezesinski, J. Phys. Chem. B, 108, 15238 (2004). https://doi.org/10.1021/jp0481512

57. R.Krivanek, P.Rybar, E.J.Prenner et al., Biochim. Biophys. Acta, 1510, 452 (2001). https://doi.org/10.1016/S0005-2736(00)00376-X

58. L.N.Lisetski, O.V.Vashchenko, A.V.Tolmachev, K.B.Vodolazhskiy, Eur. Biophys. J., 31, 554 (2002) https://doi.org/10.1007/s00249-002-0244-0

Current number: