Вы здесь

Funct. Mater. 2018; 25 (3): 422-431.

doi:https://doi.org/10.15407/fm25.03.422

Model lipid bilayers as sensor bionanomaterials for characterization of membranotropic action of water-soluble substances

O.V.Vashchenko1, N.A.Kasian1, R.Ye.Brodskii2, L.V.Budianska1, D.S.Sofronov3, L.N.Lisetski1

1Institute for Scintillation Materials, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Institute for Single Crystals, STC Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3SSI ISC, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine

Abstract: 

Model phospholipid membranes are considered as sensor bionanomaterials to characterize water-soluble drugs of kosmotropic and chaotropic nature. Effects of kosmotropic agent dimethylsulfoxide (DMSO) and chaotropic tilorone on 1,2-dipalmitoylphosphatidylchoine multibilayer membranes were studied by differential scanning calorimetry and Fourier-transformed infrared spectroscopy. Tilorone and DMSO, water soluble hydrophilic substances, induced opposite shifts of membrane main phase transition temperatures ΔT, which were positive for DMSO (as a kosmotropic dopant) and negative for chaotropic tilorone. For both dopants, dependences of ΔT vs. dopant concentration c were obtained and fitted by an analogue of the Freundlich equation of adsorption, ΔT = kc1/n. A model has been proposed describing the action of hydrophilic dopants on lipid bilayer in terms of additional lateral pressure P(c), which is positive for kosmotropes and negative for chaotropes. Applying the Clapeyron-Clausius equation to establish the character of ΔT(c) relation, power-law dependence was obtained, which was in good agreement with our exrimental data. From comparison with literature data on Langmuir monolayers of similar systems, it was noted that the same power law relations could describe both phase transition temperature shifts and pressure-area dependences as function of dopant concentration.

Keywords: 
kosmotropes, chaotropes, model lipid membranes, phenomenological model, differential scanning calorimetry.
References: 

1. M.Bloom, E.Evans, O.G.Mouritsen, Quart. Rev. Biophys., 24, 293 (1991).

2. R.Koynova, M.Caffrey, Biochim. Biophys. Acta, 1376, 91 (1998).

3. J.F.Nagle, S.Tristram-Nagle, Biochim. Biophys. Acta, 1469, 159 (2000).

4. H.Binder, Eur. Biophys. J., 36, 265 (2007).

5. C.Peetla, A.Stine, V.Labhasetwar, Mol. Pharm., 6, 1264 (2009).

6. R.Pignatello, T.Musumeci, L.Basile et al., J. Pharm. Bioallied. Sci., 3, 4 (2011).

7. H.Li, T.Zhao, Z.Sun, Rev. Anal. Chem., 37.

8. K.A.Riske, C.C.Domingues, B.R.Casadei et al., Biophys. Rev., 9, 649 (2017).

9. P.Viswanath, A.Aroti, H.Motschmann, E.Leontidis, J. Phys. Chem. B, 113, 14816 (2009).

10. C.Altunayar, I.Sahin, N.Kazanci, Chem. Phys. Lipids, 188, 37 (2015).

11. O.V.Vashchenko, Iu.L.Iermak, A.O.Krasnikova, L.N.Lisetski, Biophysics, 60, 244 (2015).

12. G.D.Bothun, L.Boltz, Y.Kurniawan, C.Scholz, Colloids Surf. B Biointerf., 139, 62 (2016).

13. A.C.Alves, D.Ribeiro, C.Nunes, S.Reis, Biochim. Biophys. Acta, 1858, 231 (2016).

14. C.M.G.Da Silva, M.Franz-Montan, C.E.G.Limia et al., PloS One, 12(10).

15. S.Tristram-Nagle, J.F.Nagle, Chem. Phys. Lipids, 127, 3 (2004).

16. C.Bourgaux, P.Couvreur, J. Control. Release, 190, 127 (2014).

17. Liquid Crystal Ordering and Nanostructuring in Model Lipid Membranes, ed. by V.A. Karachevtsev, Pan Stanford Publishing, Singapore (2016).

18. L.A.Bulavin, D.V.Soloviov, V.I.Gordeliy et al., Phase Trans., 88, 582 (2015).

19. A.O.Sadchenko, O.V.Vashchenko, N.A.Kasian, Functional Materials, 23, 230 (2016).

20. K.D.Collins, Methods, 34, 300 (2004).

21. G.E.Walrafen, J. Chem. Phys., 44, 3726 (1966).

22. H.D.B.Jenkins, Y.Marcus, Chem. Rev., 95, 2695 (1995).

23. K.D.Collins, Proc. Natl. Acad. Sci. USA, 92, 5553 (1995).

24. K.D.Collins, Biophys. Chem., 119, 271 (2006).

25. R.Zangi, J. Phys. Chem. B, 114, 643 (2010).

26. J.R.De Xammar Oro, J. Biol. Phys., 27, 73 (2001).

27. E.A.Galinski, Experientia, 49, 487 (1993).

28. T.H.Plumridge, R.D.Waigh, J. Pharm. Pharmacol., 54, 1155 (2002).

29. L.R.Singh, N.K.Poddar, T.A.Dar, J. Iran Chem. Soc., 8, 1 (2011).

30. D.Shukla, C.P.Schneider, B.L.Trout, Adv. Drug Deliv. Rev., 63, 1074 (2011).

31. S.Moelbert, B.Normand, P.De Los Rios, Biophys. Chem., 112, 45 (2004).

32. D.Russo, Chem. Phys. Lipids, 345, 200 (2008).

33. R.Koynova, J.Brankov, B.Tenchov, Eur. Biophys. J., 25, 261 (1997).

34. E.R.Pennington, C.Day, J.M.Parker et al., J. Therm. Anal. Calorim., 123, 2611 (2016).

35. S.Ohtake, C.Schebor, S.P.Palecek, J.J.de Pablo, Biochim. Biophys. Acta, 1713, 57 (2005).

36. S.Ohtake, C.Schebor, J.J.de Pablo, Biochim. Biophys. Acta, 1758, 65 (2006).

37. R.Zimmermann, D.Kuttner, L.Renner et al., J. Phys. Chem. A, 116, 6519 (2012).

38. O.V.Vashchenko, Yu.L.Ermak, L.N.Lisetski, Biophysics, 58, 515 (2013).

39. M.T.Record Jr, W.Zhang, C.F.Anderson, Adv. Protein Chem., 51, 281 (1998).

40. C.Wang, Y.Ge, J.Mortensen, P.Westh, J. Phys. Chem. B, 115, 9955 (2011).

41. A.Aroti, E.Leontidis, M.Dubois, T.Zemb, Biophys. J., 93, 1580 (2007).

42. S.Ekins, M.A.Lingerfelt, J.E.Comer, Antimicrob Agents Chemother, 62(2). DOI:10.1128/AAC.01711-17. (2018).

43. N.A.Kasian, V.A.Pashynska, O.V.Vashchenko, Mol. BioSyst., 10, 3155 (2014).

44. U.Essmann, L.Perera, M.L.Berkowitz, Langmuir, 11, 4519 (1995).

45. H.M.F.Freundlich, J. Phys. Chem. A, 57, 385 (1906).

46. C.Selle, W.Pohle, Biospectroscopy, 4, 281 (1998).

47. M.Ricci, R.Oliva, P.Del Vecchio, Biochim. Biophys. Acta, 1858, 3024 (2016).

48. P.Sassi, S.Caponi, M.Ricci, J. Raman Spectr., 46, 644 (2015).

49. W.F.Wolkers, H.Oldenhof, B.Glasmacher, Cryobiology, 61, 108 (2010).

50. L.M.Crowe, J.H.Crowe, D.Chapman, Arch. Biochem. Biophys., 236, 289 (1985).

51. C.-Y.Cheng, J.Song, J.Pas et al., Biophys. J., 109, 330 (2015).

52. M.A.Kiselev, Crystallogr. Rep., 52, 529 (2007).

53. M.A.Kiselev, T.Gutberlet, P.Lesieur et al., Chem. Phys. Lipids, 133, 181 (2005).

54. D.Marsh, Biochim. Biophys. Acta, 1286, 183 (1996).

55. R.Hartkamp, T.C.Moore, C.R.Iacovella et al., J. Phys. Chem. B, 122, 3113 (2018).

56. A.Aroti, E.Leontidis, E.Maltseva, G.Brezesinski, J. Phys. Chem. B, 108, 15238 (2004).

57. R.Krivanek, P.Rybar, E.J.Prenner et al., Biochim. Biophys. Acta, 1510, 452 (2001).

58. L.N.Lisetski, O.V.Vashchenko, A.V.Tolmachev, K.B.Vodolazhskiy, Eur. Biophys. J., 31, 554 (2002).

Current number: