Funct. Mater. 2018; 25 (3): 450-457.
Mechanisms of texture formation in thin-film systems Ni1-xWx/TiN
National Science Center Kharkiv Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine
The article is devoted to study of the problem of establishing the nature and mechanisms of processes of texture formation in both components of a thin layer system Ni - 9.5 at. % W /TiN. Comparative analysis of the structure and properties of two-layer compositions based on tapes made of ferromagnetic Ni - 5 at. % W alloy and paramagnetic Ni - 9.5 at. % W alloy with TiN coating was carried out using X-ray diffraction analysis. It was established that the mechanism and kinetics of the texture formation processes are conduced by peculiarities of the redistribution of the stress state in both subsystems of the two-component substrate-coating system. Within the framework of the present work, the strategy for obtaining the textured substrates based on Ni - 9.5 at. % W alloy is developed, which makes it possible to create effective architecture of the high-temperature superconductors of the second generation (2G HTS) with the high current-carrying capacity.
1. A.Goyal, D.P.Norton, J.D.Budai et al., Appl, Phys, Lett., 69, 1795 (1996). https://doi.org/10.1063/1.117489
2. B.Seeber, Power Applications of Superconductivity: Handbook of Applied Superconductivity. Bristol, UK: Inst. Physics (1998). https://doi.org/10.1887/0750303778
3. A.P.Malozemoff, Y.Yamada, Coated Conductor: Second Generation HTS Wire. In 100 Years of Superconductivity. ed. by H.Rogalla, P.Kes, New York:Taylor & Francis (2011).
4. M.W.Rupich, X.Li, C.Thieme et al., Supercond, Sci. Technol., 23, 014015 (2010). https://doi.org/10.1088/0953-2048/23/1/014015
5. A.Vannozzi, A.Augieri, G.Celentano et al., J Alloys Comp., 735, 454 (2018). https://doi.org/10.1016/j.jallcom.2017.11.149
6. U.Gaitzsch, J.Hanisch, R.Huhne et al., Supercond, Sci, Technol., 26, 085024 (2013). https://doi.org/10.1088/0953-2048/26/8/085024
7. U.Gaitzsch, J.Eickemeyer, Ch.Rodig, Scr, Mater., 62, 512 (2010). https://doi.org/10.1016/j.scriptamat.2009.12.030
8. Yue Zhao, HongLi Suo, Min Liu et al., Acta Mater., 55, 2609 (2007). https://doi.org/10.1016/j.actamat.2007.01.001
9. R.Huhne, R.Gartner, S.Oswald et al., Physica C, 471, 966 (2011). https://doi.org/10.1016/j.physc.2011.05.101
10. R.Huhne, S.Fahler, B.Holzapfel, Appl, Phys, Lett., 85, 2744 (2004). https://doi.org/10.1063/1.1802385
11. R.Huhne, K.Guth, M.Kidszun et al., J, Phys, D: Appl, Phys., 41, 245404 (2008). https://doi.org/10.1088/0022-3727/41/24/245404
12. J.Eickenmeier, R.Huhne, A.Guth et al., Supercond, Sci, Technol., 23, 085012 (2010). https://doi.org/10.1088/0953-2048/23/8/085012
13. A.O.Ijodola, J.R.Thomson, A.Goyal et al., Physica C, 403, 163 (2004). https://doi.org/10.1016/j.physc.2003.12.003
14. Y.A.Genenko, H.Rauh, P.Kruger, Appl, Phys, Lett., 98, 152303 (2011). https://doi.org/10.1063/1.3560461
15. S.V.Subramanya, J.Eickemeyer, L.Schultz et al., Scripta Mater., 50, 953 (2004). https://doi.org/10.1016/j.scriptamat.2004.01.004
16. F.A.Mohamed, T.G.Langdon, Mettalurgical Trans. A., 6, 927 (1975). https://doi.org/10.1007/BF02672317
17. D.J.Siegel, Appl, Phys, Lett., 87, 121901 (2005). https://doi.org/10.1063/1.2051793
18. V.A.Finkel, A.M.Bovda, S.A.Leonov et al., Functional Materials, 19, 109 (2012).
19. V.A.Finkel, V.V.Derevyanko, M.S.Sunhurov et al., Functional, Materials, 20, 103 (2013).
20. M.S.Sungurov, V.V.Derevyanko, S.A.Leonov et al., Tech, Phys, Lett., 40, 797 (2014). https://doi.org/10.1134/S1063785014090314
21. M.S.Sunhurov, S.A.Leonov, T.V.Sukhareva et al., Functional, Materials, 24, 063 (2017).
22. V.V.Derevyanko, M.S.Sunhurov, T.V.Sukhareva et al., IEEE Explore: 2017 IEEE Intern. Young Scient. Forum Appl. Phys. Engin. (YSF), Lviv, 167 (2017). https://doi.org/10.1109/YSF.2017.8126611
23. M.S.Sunhurov, V.A.Finkel, JTP, 3, (2018). In press.
24. Y.Zhao, H.L.Suo, Y.Zhu et al., Supercond, Sci, Technol., 21, 075003 (2008). https://doi.org/10.1088/0953-2048/21/7/075003
25. V.A.Belous, V.V.Vasiliev, A.A.Luchaninov et al., J. Surf. Phys. Engin., 7, 216 (2009).
26. I.I.Aksenov, A.N.Belokhvostikov, V.G.Padalka et al., Plasma Phys, Control, Fusion., 28, 761 (1986). https://doi.org/10.1088/0741-3335/28/5/002
27. I.I.Aksenov, A.A.Andreev, V.A.Belous, Vacuum Arc, Naukova Dumka, Kyiv (2012).
28. L.S.Palatnik, Proc. Kharkiv State Univ., 7, 245 (1950).
29. F.R.Aliaj, N.Syla, H.Oettel et al., Surf. Interface Anal., 49, 1135 (2017). https://doi.org/10.1002/sia.6292
30. Yu.I.Sirotin, M.P.Shoskolskaya, Basics of Crystallography, Nauka, Moscow (1979) [in Russian].
31. A.Sonin, Course of Macroscopic Crystallography, Fizmatlit, Moscow (2016) [in Russian].
32. M.M.Borodkina, E.N.Spector, X-ray Diffraction Analysis of the Texture in Metals and Alloys, Metallurgiya, Moscow (1981) [in Russian].
33. D.Hudson, Statistics for physicists, Mir, Moscow, p. 296 (1970).
34. L.I Gladkikh, S.V Malykhin, A.T.Pugachev, Diffraction Methods for Analysis of Internal Stresses (Theory and Experiment), NTU KPI, Kharkov (2006) [in Russian].
35. V.Hauk, Structural and Residual Stress Analysis by Non-destructive Methods, Evaluation, Application, Assessment, Elsevier (1997).
36. M.S.Sunhurov, T.V.Sukhareva, V.A.Finkel, IEEE Explore: 2016 II International Young Scientists Forum on Applied Physics and Engineering (YSF), Kharkiv (2016), p.96. https://doi.org/10.1109/YSF.2016.7753810
37. Y.Mawatari et al., Supercond, Sci. Technol., 23, 025031 (2010). https://doi.org/10.1088/0953-2048/23/2/025031