Вы здесь

Funct. Mater. 2018; 25 (3): 463-470.

doi:https://doi.org/10.15407/fm25.03.463

Electrical properties of photosensitive heterostructures n-FeS2/p-InSe

I.G.Tkachuk1, I.G.Orletsky2, Z.D.Kovalyuk1, P.D.Marianchuk2

1Chernivtsi Division of I.Frantsevich Institute of Materials Science Problems, 5 I.Vilde St., 58001 Chernivtsi, Ukraine
2Y.Fedkovych National University of Chernivtsi, 2 Kotsubinsky Str., 58012 Chernivtsi, Ukraine

Abstract: 

Conditions for production of photosensitive anisotypic n-FeS2/p-InSe heterojunctions by the method of low-temperature spray-pyrolysis of thin films of pyrite on crystalline p-InSe substrates are studied. On the basis of analysis of temperature dependences of direct and reverse VACs (Volt-Ampere Characteristics), the dynamics of the change in energy parameters is established and the role of the energy states at the heterojunction boundary in formation of the contact potential difference is determined. A model of the energy diagram of the heterojunction is proposed, which describes well the electrophysical phenomena observed during the experiment. The mechanisms of formation of direct and return currents through the energy barrier of n-FeS2/p-InSe are determined.

Keywords: 
spray-pyrolysis, volt-ampere haracteristics, heterojunction, heterostructures.
References: 

1. S.I.Drapak, V.B.Orletskii, Z.D.Kovalyuk, Techn. Phys. Let., 29, 480 (2003).

2. V.A.Khandozhko, Z.R.Kudrynskyi, Z.Kovalyuk, Semiconduct., 48, 545 (2014).

3. V.N.Katerinchuk, M.Z.Kovalyuk, Phys. Stat. Sol. (a), 25, 133 (1992).

4. I.G.Orletsky, M.I.Ilashchuk, V.V.Brus, Semiconduct., 50, 334 (2016).

5. Z.R.Kudrynskyi, Z.D.Kovalyuk, V.N.Katerynchuk, Act. Phys. Pol. A, 124, 720 (2013).

6. V.N.Katerynchuk, Z.R.Kudrynskyi, V.V.Khomyak, Semiconduct., 47, 943 (2013).

7. S.Middya, A.Layek, A.Dey, P.P.Ray, J. Mater. Sci. Technol., 30, 770 (2014).

8. L.Luo, W.Luan, B.Yuan, Energy Proc., 75, 2181 (2015).

9. S.Shukla, N.H.Loc, P.P.Boix, T.M.Koh, ACS Nano, 8, 10597 (2014).

10. S.Kawai, R.Yamazaki, S.Sobue, APL Materials, 2, 032110 (2014).

11. K.Buker, N.Alonso-Vante, H,Tributsch, J. Appl. Phys., 72, 5721 (1992).

12. Z.Yang, M.Wang, S.Shukla, Scient. Rep., 5, (2015).

13. I.G.Orletskii, P.D.Mar'yanchuk, E.V.Maistruk, Phys. Sol. Stat., 58, 37 (2016).

14. I.G.Orletskii, P.D.Maryanchuk, E.V.Maistruk, Inorg. Mater., 52, 851 (2016).

15. V.V.Brus, I.S.Babichuk, I.G.Orletskyi, Appl. Opt., 55, 158 (2016).

16. I.G.Orletskii, P.D.Mar'yanchuk, M.N.Solovan, Phys. Sol. Stat., 58, 1058 (2016).

17. I.G.Orletskii, P.D.Mar'yanchuk, M.N.Solovan, Tech. Phys. Lett., 42, 291 (2016).

18. C.T.Kao, J.B.Shi, H.W.Lee, F.C.Cheng, J. Therm. Spray Techn., 25, 580 (2016).

19. M.Morsli, A.Bonnet, L.Cattin, J. Phys. I France, 5, 699 (1995).

20. B.L.Sharma, R.K.Purohit, Semicond. Heteroj., 14, 451 (1974).

21. A.Ennaoui, H.Tributsch, Sol. Energy Mater., 27, 461 (1986).

22. G.W.Mudd, S.A.Svatek, L.Hague, Adv. Mater., 27, 3760 (2015).

23. F.Yan, L.Zhao, A.Patane, P.Hu, Nanotechnology, 28, 25 (2017).

24. M.K,L,Man, A.Margiolakis, S.Deckoff-Jones, Nat. Nanotech., 12, 36 (2016).

25. S.E.Al Garni, O.A.Omareye, A.F.Qasrawi, Optik - International Journal for Light and Electron Optics, 144, 340 (2017).

26. Z.D.Kovalyuk, O.N.Sydor, V.Katerinchuk, Semiconduct., 41, 1056 (2007).

27. S.M.Sze, K.Kwok, Phys. Semiconduct. Dev., 13, 19 (2007).

28. N.Kuroda, Y,Nishina, Sol. Stat. Commun., 34, 481 (1980).

29. A.G.Milnes, D.Feucht, New York and London: Academic Press), 27 , 36 (1972).

30. D.E.Husk, M.S.Seehra, Sol. Stat. Commun., 45, 1147 (1978).

31. O.Madelung, Semiconduct., 48, 23 (2007).

32. V.V.Brus, M.I.Ilashchuk, Z.D.Kovalyuk, Semiconduct., 85, 1077 (2011).

33. V.V.Brus, I.G.Orletsky, M.I.Ilashchuk, Semiconduct., 2, 1046 (2014).

34. Y.Xu, M.Schoonen, Americ. Miner., 5, 543 (2011).

35. A.Lampert Murray, P.Mark, Current Injection in Solids, 44, 24 (1970).

36. P.M.Gorley, Z.M.Grushka, V.P.Makhniy, Phys. Stat. Sol. (c), 44, 3622 (2008).

37. A.Segura, M.C.Martinez-Tomas, B.Mari, Apl. Phys. A, 34, 249 (2007).

Current number: