Funct. Mater. 2018; 25 (3): 463-470.

doi:https://doi.org/10.15407/fm25.03.463

Electrical properties of photosensitive heterostructures n-FeS2/p-InSe

I.G.Tkachuk1, I.G.Orletsky2, Z.D.Kovalyuk1, P.D.Marianchuk2

1Chernivtsi Division of I.Frantsevich Institute of Materials Science Problems, 5 I.Vilde St., 58001 Chernivtsi, Ukraine
2Y.Fedkovych National University of Chernivtsi, 2 Kotsubinsky Str., 58012 Chernivtsi, Ukraine

Abstract: 

Conditions for production of photosensitive anisotypic n-FeS2/p-InSe heterojunctions by the method of low-temperature spray-pyrolysis of thin films of pyrite on crystalline p-InSe substrates are studied. On the basis of analysis of temperature dependences of direct and reverse VACs (Volt-Ampere Characteristics), the dynamics of the change in energy parameters is established and the role of the energy states at the heterojunction boundary in formation of the contact potential difference is determined. A model of the energy diagram of the heterojunction is proposed, which describes well the electrophysical phenomena observed during the experiment. The mechanisms of formation of direct and return currents through the energy barrier of n-FeS2/p-InSe are determined.

Keywords: 
spray-pyrolysis, volt-ampere haracteristics, heterojunction, heterostructures.
References: 

1. S.I.Drapak, V.B.Orletskii, Z.D.Kovalyuk, Techn. Phys. Let., 29, 480 (2003). https://doi.org/10.1134/1.1589564

2. V.A.Khandozhko, Z.R.Kudrynskyi, Z.Kovalyuk, Semiconduct., 48, 545 (2014). https://doi.org/10.1134/S1063782614040149

3. V.N.Katerinchuk, M.Z.Kovalyuk, Phys. Stat. Sol. (a), 25, 133 (1992).

4. I.G.Orletsky, M.I.Ilashchuk, V.V.Brus, Semiconduct., 50, 334 (2016). https://doi.org/10.1134/S1063782616030167

5. Z.R.Kudrynskyi, Z.D.Kovalyuk, V.N.Katerynchuk, Act. Phys. Pol. A, 124, 720 (2013). https://doi.org/10.12693/APhysPolA.124.720

6. V.N.Katerynchuk, Z.R.Kudrynskyi, V.V.Khomyak, Semiconduct., 47, 943 (2013). https://doi.org/10.1134/S1063782613070099

7. S.Middya, A.Layek, A.Dey, P.P.Ray, J. Mater. Sci. Technol., 30, 770 (2014). https://doi.org/10.1016/j.jmst.2014.01.005

8. L.Luo, W.Luan, B.Yuan, Energy Proc., 75, 2181 (2015). https://doi.org/10.1016/j.egypro.2015.07.368

9. S.Shukla, N.H.Loc, P.P.Boix, T.M.Koh, ACS Nano, 8, 10597 (2014). https://doi.org/10.1021/nn5040982

10. S.Kawai, R.Yamazaki, S.Sobue, APL Materials, 2, 032110 (2014). https://doi.org/10.1063/1.4869035

11. K.Buker, N.Alonso-Vante, H,Tributsch, J. Appl. Phys., 72, 5721 (1992). https://doi.org/10.1063/1.351925

12. Z.Yang, M.Wang, S.Shukla, Scient. Rep., 5, (2015).

13. I.G.Orletskii, P.D.Mar'yanchuk, E.V.Maistruk, Phys. Sol. Stat., 58, 37 (2016). https://doi.org/10.1134/S1063783416010224

14. I.G.Orletskii, P.D.Maryanchuk, E.V.Maistruk, Inorg. Mater., 52, 851 (2016). https://doi.org/10.1134/S0020168516080148

15. V.V.Brus, I.S.Babichuk, I.G.Orletskyi, Appl. Opt., 55, 158 (2016). https://doi.org/10.1364/AO.55.00B158

16. I.G.Orletskii, P.D.Mar'yanchuk, M.N.Solovan, Phys. Sol. Stat., 58, 1058 (2016). https://doi.org/10.1134/S1063783416050188

17. I.G.Orletskii, P.D.Mar'yanchuk, M.N.Solovan, Tech. Phys. Lett., 42, 291 (2016). https://doi.org/10.1134/S1063785016030263

18. C.T.Kao, J.B.Shi, H.W.Lee, F.C.Cheng, J. Therm. Spray Techn., 25, 580 (2016). https://doi.org/10.1007/s11666-016-0379-7

19. M.Morsli, A.Bonnet, L.Cattin, J. Phys. I France, 5, 699 (1995). https://doi.org/10.1051/jp1:1995161

20. B.L.Sharma, R.K.Purohit, Semicond. Heteroj., 14, 451 (1974).

21. A.Ennaoui, H.Tributsch, Sol. Energy Mater., 27, 461 (1986). https://doi.org/10.1016/0165-1633(86)90030-4

22. G.W.Mudd, S.A.Svatek, L.Hague, Adv. Mater., 27, 3760 (2015). https://doi.org/10.1002/adma.201500889

23. F.Yan, L.Zhao, A.Patane, P.Hu, Nanotechnology, 28, 25 (2017). https://doi.org/10.1088/1361-6528/aa8229

24. M.K,L,Man, A.Margiolakis, S.Deckoff-Jones, Nat. Nanotech., 12, 36 (2016). https://doi.org/10.1038/nnano.2016.183

25. S.E.Al Garni, O.A.Omareye, A.F.Qasrawi, Optik - International Journal for Light and Electron Optics, 144, 340 (2017). https://doi.org/10.1016/j.ijleo.2017.06.109

26. Z.D.Kovalyuk, O.N.Sydor, V.Katerinchuk, Semiconduct., 41, 1056 (2007). https://doi.org/10.1134/S1063782607090096

27. S.M.Sze, K.Kwok, Phys. Semiconduct. Dev., 13, 19 (2007).

28. N.Kuroda, Y,Nishina, Sol. Stat. Commun., 34, 481 (1980). https://doi.org/10.1016/0038-1098(80)90656-0

29. A.G.Milnes, D.Feucht, New York and London: Academic Press), 27 , 36 (1972).

30. D.E.Husk, M.S.Seehra, Sol. Stat. Commun., 45, 1147 (1978). https://doi.org/10.1016/0038-1098(78)91130-4

31. O.Madelung, Semiconduct., 48, 23 (2007).

32. V.V.Brus, M.I.Ilashchuk, Z.D.Kovalyuk, Semiconduct., 85, 1077 (2011). https://doi.org/10.1134/S1063782611080045

33. V.V.Brus, I.G.Orletsky, M.I.Ilashchuk, Semiconduct., 2, 1046 (2014). https://doi.org/10.1134/S1063782614080077

34. Y.Xu, M.Schoonen, Americ. Miner., 5, 543 (2011).

35. A.Lampert Murray, P.Mark, Current Injection in Solids, 44, 24 (1970).

36. P.M.Gorley, Z.M.Grushka, V.P.Makhniy, Phys. Stat. Sol. (c), 44, 3622 (2008). https://doi.org/10.1002/pssc.200780149

37. A.Segura, M.C.Martinez-Tomas, B.Mari, Apl. Phys. A, 34, 249 (2007)

.

Current number: