Вы здесь

Funct. Mater. 2018; 25 (3): 490-495.

doi:https://doi.org/10.15407/fm25.03.490

Oxidation states and microstructure of manganese impurity centers in nanosized Al2O3 obtained by combustion method

I.V.Berezovskaya1, O.V.Khomenko1, N.I.Poletaev2, M.E.Khlebnikova2, I.V.Stoyanova1, N.P.Efryushina1, V.P.Dotsenko1

1A.Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Doroga Str., 65080 Odessa, Ukraine
2Institute of Combustion and Advanced Technologies, Mechnikov Odessa National University, 2 Dvoryanskaya Str., 65082 Odessa, Ukraine

Abstract: 

Nanosized (10-70 nm) Al2O3 doped with manganese ions (Mn3+) was obtained by combustion method. It was found that the resulting powder consists of a mixture of transition aluminas (δ*, δ, θ), among which δ*-phase is dominant. It was shown that a part of Mn ions exists in the oxidation state +2 and occupies tetrahedral positions in δ*-Al2O3, causing a broadband luminescence with a maximum at ~ 520 nm. Annealing in air at temperatures ≤1130 °C results in the formation of stable α-polymorph. It is shown that the δ*, θ -> α-Al2O3 phase transition is followed by oxidation of Mn2+/Mn3+ ions and the stabilization of some amount of manganese ions in the oxidation state +4 on octahedral Al positions.

Keywords: 
nanoparticles, aluminum oxide, manganese, luminescence.
References: 

1. I.Levin, D.Brandon, J. Am. Ceram. Soc., 81, 1995 (1998).

2. B.D.J.Evans, J. Nucl. Mater., 219, 202 (1995).

3. S.Ikeda, T.Uchino, J. Phys. Chem. C, 118, 4346 (2014).

4. S.V.Gorbunov, S.O.Cholakh, V.A.Pustovarov et al., Phys. Stat. Sol. (c), 2, 351 (2005).

5. M.Kirm, E.Feldbach, A.Kotlov et al., Radiat. Meas., 45, 618 (2010).

6. Z.Wang, C.Li, L.Liu, T-K.Sham, J. Chem. Phys., 138, 084706 (2013).

7. L.Trinkler, B.Berzina, D.Jakimovica et al., Opt. Mater., 32, 789 (2010).

8. L.Trinkler, B.Berzina, Z.Jevsjutina et al., Opt. Mater., 34, 1553 (2012).

9. O.A.Bulavchenko, T.N.Afanasenko, P.G.Tsyrul'nikov et al., Kinet. Catal., 55, 671 (2014).

10. S.A.B.Asif, S.B.Khan, A.M.Asiri, Nanosc. Res. Lett., 10, 355 (2015).

11. E.Lopez-Navarrete, A.Caballero, A.R.Gonzalez-Elpe, M.Ocana, J. Eur. Ceram. Soc., 24, 3057 (2004).

12. A.Van Die, W.F.van der Weg, A.C.H.I.Leenaers, G.Blasse, Mat. Res. Bull., 22, 781 (1987).

13. A.N.Zolotko, N.I.Poletaev, Ya.I.Vovchuk, Comb. Expl. Shock Waves., 52, 252 (2015).

14. V.P.Dotsenko, I.V.Berezovskaya, E.V.Zubar et al., J. Alloys Compd., 550, 159 (2013).

15. T.Hinklin, B.Toury, C.Gervais et al., Chem. Mater., 16, 21 (2004).

16. I.V.Berezovskaya, N.I.Poletaev, M.E.Khlebnikova et al., Meth. Appl. Fluoresc., 4, 034011 (2016).

17. P.-L.Chang, F.-S.Yen, K.-C.Cheng, H.-L.Wen, Nano Lett., 1, 253 (2001).

18. J.Gangwar, B.K.Gupta, S.K.Tripathi, A.K.Srivastava, Nanoscale, 32, 13313 (2015).

19. Y.Huang, G.A.Risha, V.Yang, R.A.Yetter, Comb. Flame, 156, 5 (2009).

20. N.I.Poletaev, A.V.Florko, Comb. Expl. Shock Waves, 43, 414 (2007).

21. D.S.McClure, J. Chem. Phys., 16, 2757 (1962).

22. S.Kuck, S.Hartung, S.Hurling et al., Phys. Rev. B, 57, 2203 (1998).

23. M.A.Noginov, G.B.Loutts, M.Warren, J. Opt. Soc. Am. B., 16, 475 (1999).

24. L.Cornu, M.Duttine, M.Gaudon, V.Jubera, J. Mater. Chem. C., 2, 9512 (2012).

25. K.Li, H.Wang, X.Liu et al., J. Eur. Ceram. Soc., 37, 4229 (2017).

26. A.B.P.Lever, Inorganic Electronic Spectroscopy, Elsevier Science Publishers B.V. Amsterdam (1984).

27. Yu.D.Ivakin, M.N.Danchevskaya, O.G.Ovchinnikova et al., Supercit. Fluids: Theor. Pract., 3, 11 (2008).

28. A.M.Srivastava, M.G.Brik, Opt. Mater., 63, 207 (2017).

Current number: