Вы здесь

Funct. Mater. 2018; 25 (3): 490-495.

doi:https://doi.org/10.15407/fm25.03.490

Oxidation states and microstructure of manganese impurity centers in nanosized Al2O3 obtained by combustion method

I.V.Berezovskaya1, O.V.Khomenko1, N.I.Poletaev2, M.E.Khlebnikova2, I.V.Stoyanova1, N.P.Efryushina1, V.P.Dotsenko1

1A.Bogatsky Physico-Chemical Institute, National Academy of Sciences of Ukraine, 86 Lustdorfskaya Doroga Str., 65080 Odessa, Ukraine
2Institute of Combustion and Advanced Technologies, Mechnikov Odessa National University, 2 Dvoryanskaya Str., 65082 Odessa, Ukraine

Abstract: 

Nanosized (10-70 nm) Al2O3 doped with manganese ions (Mn3+) was obtained by combustion method. It was found that the resulting powder consists of a mixture of transition aluminas (δ*, δ, θ), among which δ*-phase is dominant. It was shown that a part of Mn ions exists in the oxidation state +2 and occupies tetrahedral positions in δ*-Al2O3, causing a broadband luminescence with a maximum at ~ 520 nm. Annealing in air at temperatures ≤1130 °C results in the formation of stable α-polymorph. It is shown that the δ*, θ -> α-Al2O3 phase transition is followed by oxidation of Mn2+/Mn3+ ions and the stabilization of some amount of manganese ions in the oxidation state +4 on octahedral Al positions.

Keywords: 
nanoparticles, aluminum oxide, manganese, luminescence.
References: 

1. I.Levin, D.Brandon, J. Am. Ceram. Soc., 81, 1995 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02581.x

2. B.D.J.Evans, J. Nucl. Mater., 219, 202 (1995). https://doi.org/10.1016/0022-3115(94)00529-X

3. S.Ikeda, T.Uchino, J. Phys. Chem. C, 118, 4346 (2014). https://doi.org/10.1021/jp412270f

4. S.V.Gorbunov, S.O.Cholakh, V.A.Pustovarov et al., Phys. Stat. Sol. (c), 2, 351 (2005). https://doi.org/10.1002/pssc.200460182

5. M.Kirm, E.Feldbach, A.Kotlov et al., Radiat. Meas., 45, 618 (2010). https://doi.org/10.1016/j.radmeas.2009.12.006

6. Z.Wang, C.Li, L.Liu, T-K.Sham, J. Chem. Phys., 138, 084706 (2013). https://doi.org/10.1063/1.4793473

7. L.Trinkler, B.Berzina, D.Jakimovica et al., Opt. Mater., 32, 789 (2010). https://doi.org/10.1016/j.optmat.2010.01.005

8. L.Trinkler, B.Berzina, Z.Jevsjutina et al., Opt. Mater., 34, 1553 (2012). https://doi.org/10.1016/j.optmat.2012.03.029

9. O.A.Bulavchenko, T.N.Afanasenko, P.G.Tsyrul'nikov et al., Kinet. Catal., 55, 671 (2014). https://doi.org/10.1134/S0023158414050048

10. S.A.B.Asif, S.B.Khan, A.M.Asiri, Nanosc. Res. Lett., 10, 355 (2015). https://doi.org/10.1186/s11671-015-0990-4

11. E.Lopez-Navarrete, A.Caballero, A.R.Gonzalez-Elpe, M.Ocana, J. Eur. Ceram. Soc., 24, 3057 (2004). https://doi.org/10.1016/j.jeurceramsoc.2003.11.018

12. A.Van Die, W.F.van der Weg, A.C.H.I.Leenaers, G.Blasse, Mat. Res. Bull., 22, 781 (1987). https://doi.org/10.1016/0025-5408(87)90032-8

13. A.N.Zolotko, N.I.Poletaev, Ya.I.Vovchuk, Comb. Expl. Shock Waves., 52, 252 (2015). https://doi.org/10.1134/S0010508215020094

14. V.P.Dotsenko, I.V.Berezovskaya, E.V.Zubar et al., J. Alloys Compd., 550, 159 (2013). https://doi.org/10.1016/j.jallcom.2012.09.053

15. T.Hinklin, B.Toury, C.Gervais et al., Chem. Mater., 16, 21 (2004). https://doi.org/10.1021/cm021782t

16. I.V.Berezovskaya, N.I.Poletaev, M.E.Khlebnikova et al., Meth. Appl. Fluoresc., 4, 034011 (2016). https://doi.org/10.1088/2050-6120/4/3/034011

17. P.-L.Chang, F.-S.Yen, K.-C.Cheng, H.-L.Wen, Nano Lett., 1, 253 (2001). https://doi.org/10.1021/nl015501c

18. J.Gangwar, B.K.Gupta, S.K.Tripathi, A.K.Srivastava, Nanoscale, 32, 13313 (2015). https://doi.org/10.1039/C5NR02369F

19. Y.Huang, G.A.Risha, V.Yang, R.A.Yetter, Comb. Flame, 156, 5 (2009). https://doi.org/10.1016/j.combustflame.2008.07.018

20. N.I.Poletaev, A.V.Florko, Comb. Expl. Shock Waves, 43, 414 (2007). https://doi.org/10.1007/s10573-007-0056-8

21. D.S.McClure, J. Chem. Phys., 16, 2757 (1962). https://doi.org/10.1063/1.1732364

22. S.Kuck, S.Hartung, S.Hurling et al., Phys. Rev. B, 57, 2203 (1998). https://doi.org/10.1103/PhysRevB.57.2203

23. M.A.Noginov, G.B.Loutts, M.Warren, J. Opt. Soc. Am. B., 16, 475 (1999). https://doi.org/10.1364/JOSAB.16.000475

24. L.Cornu, M.Duttine, M.Gaudon, V.Jubera, J. Mater. Chem. C., 2, 9512 (2012). https://doi.org/10.1039/C4TC01425A

25. K.Li, H.Wang, X.Liu et al., J. Eur. Ceram. Soc., 37, 4229 (2017). https://doi.org/10.1016/j.jeurceramsoc.2017.04.057

26. A.B.P.Lever, Inorganic Electronic Spectroscopy, Elsevier Science Publishers B.V. Amsterdam (1984).

27. Yu.D.Ivakin, M.N.Danchevskaya, O.G.Ovchinnikova et al., Supercit. Fluids: Theor. Pract., 3, 11 (2008).

28. A.M.Srivastava, M.G.Brik, Opt. Mater., 63, 207 (2017). https://doi.org/10.1016/j.optmat.2016.06.032

Current number: