Вы здесь

Funct. Mater. 2018; 25 (3): 496-504.

doi:https://doi.org/10.15407/fm25.03.496

Optimisation of properties of silicon carbide ceramics with the use of different additives

K.Lobach1, Y.Kupriiyanova1, I.Kolodiy1, S.Sayenko1, V.Shkuropatenko1, V.Voyevodin1, A.Zykova1, A.Bykov2, O.Chunyayev2, L.Tovazhnyanskyy2

1National Science Center Kharkiv Institute of Physics and Technology, 1 Akademicheskaya Str., 61108 Kharkiv, Ukraine
2National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine

Abstract: 

The influence of different additions on the densification behavior of SiC based ceramics has been investigated. The SiC matrices reinforced by additives of amorphous B, Cr, Si were fabricated using High Speed Hot Pressing Method. Additives content was in the range from 0.5 to 3 wt. %. Microstructural characteristics of silicon carbide ceramics were analyzed by X-ray diffraction, scanning electron microscopy and elemental distribution analyses. A fine-grained and dense ceramics with advanced mechanical properties were produced at optimal processing conditions. SiC ceramics with Cr and Si additives possess the best structural and mechanical characteristics: micro hardness 28.0-30 GPa and fracture toughness K1C = 6.2-4.7 ċm1/2, respectively. The sintering process by High-Speed Hot Pressing Method leads to the fine-grained structure formation and increase of the fracture toughness of ceramics. The structural and mechanical properties of SiC ceramics can be improved by effective additives content controlling.

Keywords: 
silicon carbide, nuclear, ceramics, sintering, micro hardness, fracture toughness.
References: 

1. L.L.Snead, R.H.Jones, A.Kohyama et al., J. Nucl. Mater., 26, 233 (1996).

2. S.Yeo, E.McKenna, R.Baney et al., J. Nucl. Mater., 433, 66 (2013).

3. L.L.Snead, T.Inozawa, Y.Katoh et al., J. Nucl. Mater., 371, 329 (2007).

4. K.A.Terrani, B.A.Pint, C.M.Parish et al., J. Am. Ceram. Soc., 97, 2331 (2014).

5. M.Ben-Belgacem V. Richet, K.A.Terrani et al., J. Nucl. Mater., 447, 125 (2014).

6. K.Yueh, D.Carpenter, H.Feinroth, Nucl. Eng. Int., 55, 14 (2010).

7. K.Yueh, K.A.Terrani, J. Nucl. Mater., 448, 380 (2014).

8. Y.Katoh, K.Ozawa, C.Shih et al., J. Nucl. Mater., 448, 448 (2014).

9. B.A.Pint, K.A.Terrani, M.P.Brady et al., J. Nucl. Mater., 440, 420 (2013).

10. P.F.Tortorelli, K.L.More, J. Am. Ceram. Soc., 86, 1249 (2003).

11. Y.Katoh, L.L.Snead, T.Cheng et al., J. Nucl. Mater., 448, 497 (2014).

12. E.J.Opila, J. Am. Ceram. Soc., 82, 625 (1999).

13. C.H.Henager, Y.Shin, Y.Blum et al., J. Nucl. Mater., 1139, 367 (2007).

14. M.Herrmann, W.Lippmann, A.Hurtado, J. Nucl. Mater., 443, 458 (2013).

15. Y.Katoh, L.L.Snead, T.Nozawa et al., J. Nucl. Mater., 403, 48 (2010).

16. J.H.She, K.Ueno, Mater. Res. Bull., 34, 1629 (1999).

17. Z.H.Huang, D.C.Jia, Ceram. Intern., 29, 13 (2003).

18. V.A.Izhevsikyi, L.A.Genova, Intern. J. Refract. Metal & Hard Mater., 19, 407 (2001).

19. R.P.Jensen, E.W.Luecke, Mater. Sci. Engin.: A, 282, 109 (2000).

20. Y.W.Kim, J.Y.Kim, J. Eur. Cer. Soc., 20, 945 (2000).

21. E.Liden, E.Carlstrom, J. Amer. Cer. Soc., 78, 1761 (1995).

22. K.Lobach, Ye.Svitlychnyi, S.Sayenko et al., Probl. At. Sci. Techn., 108, 97 (2017).

23. A.G.Evans, E.A.Charles, J. Amer. Cer. Soc., 59, 371 (1976).

24. K.Niihara, R.Morena, D.P.H.Hasselman, J. Mater. Sci. Lett., 1, 13 (1982).

25. G.A.Gogotsi, A.V.Bashta, Problemy Prochnosti, 9, 49 (1990).

26. Ye.P.Ponomarenko, A.I.Plyshevskiy, V.K.Suprunchuk, Metallizatsiya Staley i Splavov v Vakuume, Tekhnika, Kiev (1974).

27. J.Wade, P.Claydon, H.Wu, Amer. Cer. Soc., 35, 91 (2015).

28. D.O.Moskovskikh, Y.Song, S.Rouvimov et al., Ceram. Intern., 42, 12686 (2016).

Current number: