Вы здесь

Funct. Mater. 2018; 25 (3): 516-524.

doi:https://doi.org/10.15407/fm25.03.516

Structure of thermally evaporated bismuth selenide thin films

E.I.Rogacheva1, A.G.Fedorov2, S.I.Krivonogov2, P.V.Mateychenko2, M.V.Dobrotvorskay2, A.S.Garbuz3, O.N.Nashchekina1, A.Yu.Sipatov1

1National Technical University Kharkov Polytechnic Institute, 2 Kyrpychova St., 61002 Kharkiv,Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
3B.Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

The Bi2Se3 thin films with thicknesses d = 7-420 nm were grown by thermal evaporation in vacuum of stoichiometric n-Bi2Se3 crystals onto heated glass substrates under optimal technological conditions determined by the authors. The growth mechanism, microstructure, and crystal structure of the prepared thin films were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. It was established that the prepared thin films were polycrystalline, with composition close to the stoichiometric one, did not contain any phases apart from Bi2Se3, were of a high structural quality, and the preferential growth direction [001] corresponded to the direction of a trigonal axis C3 in a hexagonal lattice. The films, like the initial crystal, exhibited n-type conductivity. It was shown that with increasing film thickness, the grain size and the film roughness remain practically the same at thicknesses d << 100 nm, and after that increase, reaching their saturation values at d ~ 300 nm. It follows from the results obtained in this work that using the method of thermal evaporation in vacuum from a single source, one can prepare thin n-Bi2Se3 films of a sufficiently high structural quality with a composition close to the stoichiometric one and the preferential growth orientation.

Keywords: 
bismuth selenide, thermal evaporation, glass substrates, thin films, thickness, crystal structure, crystal morphology, grain size, roughness, preferential orientation.
References: 

1. H.J.Goldsmid, Introduction to Thermoelectricity, Springer-Verlag, Berlin, Heidelberg, Germany (2016). https://doi.org/10.1007/978-3-662-49256-7

2. Materials Aspect of Thermoelectricity, ed. by C.Uher, Boca Raton, CRC Press (2016). https://doi.org/10.1201/9781315197029

3. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, Boca Raton, CRC Press, Taylor & Francis Group (2006).

4. M.S.Dresselhaus, G.Chen, M.Y.Tang et al., Adv. Mater., 19, 1043 (2007). https://doi.org/10.1002/adma.200600527

5. R.Venkatasubramanian, E.Siivola, T.Colpitts, B.O'Quinn, Nature, 413, 597 (2001). https://doi.org/10.1038/35098012

6. M.Z.Hasan, C.L.Kane, Rev. Mod. Phys., 82, 3045 (2010). https://doi.org/10.1103/RevModPhys.82.3045

7. D.Culcer, Physica E, 44, 860 (2012). https://doi.org/10.1016/j.physe.2011.11.003

8. L.Muchler, F.Casper, B.Yan et al., Phys. Stat. Sol. RRL, 7, 91 (2013). https://doi.org/10.1002/pssr.201206411

9. D.Teweldebrhan, V.Goyal, M.Rahman et al., Appl. Phys. Lett., 96, 053107 (2010). https://doi.org/10.1063/1.3280078

10. P.Ghaemi, R.S.K.Mong, J.Moore, Phys. Rev. Lett., 105, 166603 (2010). https://doi.org/10.1103/PhysRevLett.105.166603

11. J.H.Davies, The Physics of Low-Dimensional Semiconductors. An Introduction, Cambridge University Press, Cambridge, USA (1997).

12. Yu.F.Komnik, Physics of Metal Films, Atomizdat, Moscow (1979) [in Russian].

13. E.I.Rogacheva, O.S.Vodorez, O.N.Nashchekina et al., J. Electron. Mater., 39, 2085 (2010). https://doi.org/10.1007/s11664-009-0996-8

14. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015). https://doi.org/10.1063/1.4907319

15. E.I.Rogacheva, A.V.Budnik, A.G.Fedorov et al., J. Thermoelectricity, 2, 5 (2015).

16. E.I.Rogacheva, O.N.Nashchekina, A.V.Budnik et al., Thin Solid Films, 612, 128 (2016). https://doi.org/10.1016/j.tsf.2016.05.046

17. A.V.Budnik, E.I.Rogacheva, V.I.Pinegin et al., J. Electron. Mater., 42, 1324 (2013). https://doi.org/10.1007/s11664-012-2439-1

18. A.V.Budnik, E.I.Rogacheva, A.Yu.Sipatov, J. Thermoelectricity, 4, 19 (2013).

19. K.J.John, B.Pradeep, E.Mathai, Sol. State Comm., 83, 501 (1992). https://doi.org/10.1016/0038-1098(92)90046-C

20. K.J.John, B.Pradeep, E.Mathai, Sol. State Comm., 85, 879 (1993). https://doi.org/10.1016/0038-1098(93)90196-T

21. D.Nataraj, K.Senthil, Sa.K.Narayandass, D.Mangalaraj, Cryst. Res. Technol., 34, 867 (1999). https://doi.org/10.1002/(SICI)1521-4079(199908)34:7<867::AID-CRAT867>3.0.CO;2-8

22. D.Nataraj, K.Senthil, Sa.K.Narayandass, D.Mangalaraj, Indian J. Engineering and Materials Sciences, 6, 164 (1999).

23. D.Nataraj, K.Prabakar, Sa.K.Narayandass, D.Mangalaraj, Cryst. Res. Technol., 35, 1087 (2000). https://doi.org/10.1002/1521-4079(200009)35:9<1087::AID-CRAT1087>3.0.CO;2-W

24. V.T.Patil, Y.R.Toda, D.N.Gujarathi, Intern. J. Sci Engin Res, 5, 1220 (2014).

25. S.S.Fouad, A.Y.Morsy, H.M.Talaat, M.E.El-Tawab, Phys. Stat. Sol. B, 183, 149 (1994). https://doi.org/10.1002/pssb.2221830111

26. N.N.Ojha, J.P.Sharma, A.Kumar, Radial Chalcogenide Lett., 11, 281 (2014).

27. A.A.El-Shazly, M.I.El-Agrab, S.S.Fouad et al., Egypt. J. Solid., 14, 89 (1991).

28. L.J.Collins-McIntyre, W.Wang, B.Zhou et al., Phys. Stat. Sol. B, 252, 1334 (2015). https://doi.org/10.1002/pssb.201552003

29. L.He, F.Xiu, Y.Wang et al., J. Appl. Phys., 109, 103702 (2011). https://doi.org/10.1063/1.3585673

30. X.F.Kou, L.He, F.X.Xiu et al., Appl. Phys. Lett., 98, 242102 (2011). https://doi.org/10.1063/1.3599540

31. N.Bansal, Y.S.Kim, M.Brahlek et al., Phys. Rev. Lett., 109, 116804 (2012). https://doi.org/10.1103/PhysRevLett.109.116804

32. A.A.Taskin, S.Sasaki, K.Segawa, Y.Ando, Phys. Rev. Letters, 109, 066803 (2012). https://doi.org/10.1103/PhysRevLett.109.066803

33. Z.Chen, T.A.Garcia, J.De Jesus et al., J. Electron. Mater., 43, 909 (2014). https://doi.org/10.1007/s11664-013-2890-7

34. J.Chen, H.J.Qin, F.Yang et al., Phys. Rev. Lett., 105, 176602 (2010). https://doi.org/10.1103/PhysRevLett.105.176602

35. W.J.Wang, K.H.Gao, Z.Q.Li, Scientific Reports, 6, 25291 (2016). https://doi.org/10.1038/srep25291

36. P.H.Le, K.H.Wu, C.W.Luo, J.Leu, Thin Solid Films, 534, 659 (2013). https://doi.org/10.1016/j.tsf.2013.01.104

37. N.D.Desai, V.B.Ghanwat, K.V.Khot et al., J. Mater. Sci.:Mater. Electron., 27, 2385 (2016). https://doi.org/10.1007/s10854-015-4036-6

38. Z.Sun, S.Liufu, R.Liu et al., J. Mater. Chem., 21, 2351 (2011). https://doi.org/10.1039/C0JM03561K

39. K.Kadel, L.Kumari, W.Z.Li et al., Nanoscale Res. Lett., 6, 57 (2011).

40. X.Li, K.Cai, H.Li et al., Int. J. Miner. Metall. Mater., 17, 104 (2010). https://doi.org/10.1007/s12613-010-0118-x

41. R.Sankapal, C.D.Lokhande, Mater. Chem. Phys., 73, 151 (2002). https://doi.org/10.1016/S0254-0584(01)00362-5

42. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967.

43. M.Ferhat, J.C.Tedenac, J.Nagao, J. Cryst. Growth, 218, 250 (2000). https://doi.org/10.1016/S0022-0248(00)00582-0

44. M.Ferhat, B.Liautard, G.Brun et al., J. Cryst. Growth, 167, 122 (1996). https://doi.org/10.1016/0022-0248(96)00247-3

45. J.C.Tedenac, S.Dal Corso, A.Haidoux et al., Mat. Res. Soc. Symp. Proc., 545, 93 (1998). https://doi.org/10.1557/PROC-545-93

46. I.Novikov. Theory of Metal Thermal Treatment, Metallurgia, Moscow (1978) [in Russian].

47. B.S.Jariwala, D.V.Shah, V.Kheraj, J. Nano-Electron. Phys., 3, 101 (2011).

Current number: