Вы здесь

Funct. Mater. 2018; 25 (3): 516-524.

doi:https://doi.org/10.15407/fm25.03.516

Structure of thermally evaporated bismuth selenide thin films

E.I.Rogacheva1, A.G.Fedorov2, S.I.Krivonogov2, P.V.Mateychenko2, M.V.Dobrotvorskay2, A.S.Garbuz3, O.N.Nashchekina1, A.Yu.Sipatov1

1National Technical University Kharkov Polytechnic Institute, 2 Kyrpychova St., 61002 Kharkiv,Ukraine
2Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
3B.Verkin Institute for Low Temperature Physics and Engineering, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

The Bi2Se3 thin films with thicknesses d = 7-420 nm were grown by thermal evaporation in vacuum of stoichiometric n-Bi2Se3 crystals onto heated glass substrates under optimal technological conditions determined by the authors. The growth mechanism, microstructure, and crystal structure of the prepared thin films were studied using X-ray diffraction, scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, and atomic force microscopy. It was established that the prepared thin films were polycrystalline, with composition close to the stoichiometric one, did not contain any phases apart from Bi2Se3, were of a high structural quality, and the preferential growth direction [001] corresponded to the direction of a trigonal axis C3 in a hexagonal lattice. The films, like the initial crystal, exhibited n-type conductivity. It was shown that with increasing film thickness, the grain size and the film roughness remain practically the same at thicknesses d d ~ 300 nm. It follows from the results obtained in this work that using the method of thermal evaporation in vacuum from a single source, one can prepare thin n-Bi2Se3 films of a sufficiently high structural quality with a composition close to the stoichiometric one and the preferential growth orientation.

Keywords: 
bismuth selenide, thermal evaporation, glass substrates, thin films, thickness, crystal structure, crystal morphology, grain size, roughness, preferential orientation.
References: 

1. H.J.Goldsmid, Introduction to Thermoelectricity, Springer-Verlag, Berlin, Heidelberg, Germany (2016).

2. Materials Aspect of Thermoelectricity, ed. by C.Uher, Boca Raton, CRC Press (2016).

3. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, Boca Raton, CRC Press, Taylor & Francis Group (2006).

4. M.S.Dresselhaus, G.Chen, M.Y.Tang et al., Adv. Mater., 19, 1043 (2007).

5. R.Venkatasubramanian, E.Siivola, T.Colpitts, B.O'Quinn, Nature, 413, 597 (2001).

6. M.Z.Hasan, C.L.Kane, Rev. Mod. Phys., 82, 3045 (2010).

7. D.Culcer, Physica E, 44, 860 (2012).

8. L.Muchler, F.Casper, B.Yan et al., Phys. Stat. Sol. RRL, 7, 91 (2013).

9. D.Teweldebrhan, V.Goyal, M.Rahman et al., Appl. Phys. Lett., 96, 053107 (2010).

10. P.Ghaemi, R.S.K.Mong, J.Moore, Phys. Rev. Lett., 105, 166603 (2010).

11. J.H.Davies, The Physics of Low-Dimensional Semiconductors. An Introduction, Cambridge University Press, Cambridge, USA (1997).

12. Yu.F.Komnik, Physics of Metal Films, Atomizdat, Moscow (1979) [in Russian].

13. E.I.Rogacheva, O.S.Vodorez, O.N.Nashchekina et al., J. Electron. Mater., 39, 2085 (2010).

14. E.I.Rogacheva, A.V.Budnik, A.Yu.Sipatov et al., Appl. Phys. Lett., 106, 053103 (2015).

15. E.I.Rogacheva, A.V.Budnik, A.G.Fedorov et al., J. Thermoelectricity, 2, 5 (2015).

16. E.I.Rogacheva, O.N.Nashchekina, A.V.Budnik et al., Thin Solid Films, 612, 128 (2016).

17. A.V.Budnik, E.I.Rogacheva, V.I.Pinegin et al., J. Electron. Mater., 42, 1324 (2013).

18. A.V.Budnik, E.I.Rogacheva, A.Yu.Sipatov, J. Thermoelectricity, 4, 19 (2013).

19. K.J.John, B.Pradeep, E.Mathai, Sol. State Comm., 83, 501 (1992).

20. K.J.John, B.Pradeep, E.Mathai, Sol. State Comm., 85, 879 (1993).

21. D.Nataraj, K.Senthil, Sa.K.Narayandass, D.Mangalaraj, Cryst. Res. Technol., 34, 867 (1999).

22. D.Nataraj, K.Senthil, Sa.K.Narayandass, D.Mangalaraj, Indian J. Engineering and Materials Sciences, 6, 164 (1999).

23. D.Nataraj, K.Prabakar, Sa.K.Narayandass, D.Mangalaraj, Cryst. Res. Technol., 35, 1087 (2000).

24. V.T.Patil, Y.R.Toda, D.N.Gujarathi, Intern. J. Sci Engin Res, 5, 1220 (2014).

25. S.S.Fouad, A.Y.Morsy, H.M.Talaat, M.E.El-Tawab, Phys. Stat. Sol. B, 183, 149 (1994).

26. N.N.Ojha, J.P.Sharma, A.Kumar, Radial Chalcogenide Lett., 11, 281 (2014).

27. A.A.El-Shazly, M.I.El-Agrab, S.S.Fouad et al., Egypt. J. Solid., 14, 89 (1991).

28. L.J.Collins-McIntyre, W.Wang, B.Zhou et al., Phys. Stat. Sol. B, 252, 1334 (2015).

29. L.He, F.Xiu, Y.Wang et al., J. Appl. Phys., 109, 103702 (2011).

30. X.F.Kou, L.He, F.X.Xiu et al., Appl. Phys. Lett., 98, 242102 (2011).

31. N.Bansal, Y.S.Kim, M.Brahlek et al., Phys. Rev. Lett., 109, 116804 (2012).

32. A.A.Taskin, S.Sasaki, K.Segawa, Y.Ando, Phys. Rev. Letters, 109, 066803 (2012).

33. Z.Chen, T.A.Garcia, J.De Jesus et al., J. Electron. Mater., 43, 909 (2014).

34. J.Chen, H.J.Qin, F.Yang et al., Phys. Rev. Lett., 105, 176602 (2010).

35. W.J.Wang, K.H.Gao, Z.Q.Li, Scientific Reports, 6, 25291 (2016).

36. P.H.Le, K.H.Wu, C.W.Luo, J.Leu, Thin Solid Films, 534, 659 (2013).

37. N.D.Desai, V.B.Ghanwat, K.V.Khot et al., J. Mater. Sci.:Mater. Electron., 27, 2385 (2016).

38. Z.Sun, S.Liufu, R.Liu et al., J. Mater. Chem., 21, 2351 (2011).

39. K.Kadel, L.Kumari, W.Z.Li et al., Nanoscale Res. Lett., 6, 57 (2011).

40. X.Li, K.Cai, H.Li et al., Int. J. Miner. Metall. Mater., 17, 104 (2010).

41. R.Sankapal, C.D.Lokhande, Mater. Chem. Phys., 73, 151 (2002).

42. Powder Diffraction File, Joint Committee on Powder Diffraction Standards, ASTM, Philadelphia, PA, 1967.

43. M.Ferhat, J.C.Tedenac, J.Nagao, J. Cryst. Growth, 218, 250 (2000).

44. M.Ferhat, B.Liautard, G.Brun et al., J. Cryst. Growth, 167, 122 (1996).

45. J.C.Tedenac, S.Dal Corso, A.Haidoux et al., Mat. Res. Soc. Symp. Proc., 545, 93 (1998).

46. I.Novikov. Theory of Metal Thermal Treatment, Metallurgia, Moscow (1978) [in Russian].

47. B.S.Jariwala, D.V.Shah, V.Kheraj, J. Nano-Electron. Phys., 3, 101 (2011).

Current number: