Вы здесь

Funct. Mater. 2018; 25 (3): 554-563.

doi:https://doi.org/10.15407/fm25.03.554

Optimization of preparation process and performance analysis of fly ash foam glass

Zipeng Qin, Gang Li, Yan Tian, Yuwei Ma, Pengfei Shen

College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi 832000, China

Abstract: 

Foam glass was prepared with fly ash and glass powder as main raw materials, sodium carbonate as foaming agent, and trisodium phosphate as suds-stabilizing agent. The influence of the amount of fly ash and sodium carbonate, foaming temperature and foaming time on the compressive strength, flexural strength, apparent density and thermal conductivity of foam glass was studied by orthogonal experiment and the optimum technological conditions for preparing foam glass were obtained. The pore structure, morphology, pore size distribution, morphology and crystal precipitation of foam glass were investigated by means of Occhio Scan v750, Nano Measurer, SEM and XRD. The result shows that the amount of fly ash has a significant influence on the mechanical and thermal conductivity of foam glass, the foaming temperature has the greatest influence on the apparent density, and the influence of sodium carbonate content on the average pore size is the most obvious. The pore numbers of 9 sets of samples are approximately normal distribution with the change of average pore sizes, and the average pore sizes of 0.1-2.0mm exceed 85%. There is a certain amount of crystal precipitating inside the foam glass and the major and secondary crystalline phase are nepheline and diopside respectively.

Keywords: 
porous structure; foaming temperature; foaming time; foaming agent; fly ash; foam glass.
References: 

1. Lyuben Lakov, Krasimira Toncheva, Pencho Zlatev, et al, J.Mater. Scie. Techn., 20,147, 2012

2. Chen Bo, Luo Zhiwei, Lu Anxian. Mater. Letters, 65, 3555, 2011.

3. Jakob Konig,Rasmus R Petersen,Yuanzheng Yue, et al., J. Eur. Ceram. Soc., 34,1591, 2014.

4. Rasmus R.Petersen,Jakob Konig,Yuanzheng Yue., J.Non-Crystall. Solids, 456, 49, 2017.

5. Huan Shi,Keqin Feng,Haibo Wang,et al.al., Int. J. Minerals, Metallurg. Mater., 23, 595, 2016.

6. Andrea Ventrella,Federico Smeacetto,Milena Salvo,et al., J.Mater.Eng.Perform, 21, 2380, 2012.

7. Abbasi S, Mirkazemi S M, Ziaee A, et al., Glass Phys.Chem. A., 40,173, 2014.

8. Qu YaNan,Xu Jie,Su ZhenGuo,et al., Ceramic Intern.,42, 2370, 2016.

9. Xinyue Fang,Qie Li,Tao Yang, et al., Constr. Build. Mater.,134,358, 2017.

10. Hrma, P., J.Non-Crystall. Solid., 355, 257, 2009.

11. V. Vaganov, M. Popov, A. Korjakins, et al, Procedia Eng. 172,1204, 2017.

12. Fernandes H R,Tulyaganov D U,Ferreira J M F., Ceramic Intern., 35, 229, 2009.

13. Rasmus R Petersen, Jakob Konig, Yuanzheng Yue, J.Non-Crystall. Solids, 456, 49, 2017.

14. Chen Bo,Wang Keqiang,Chen Xingjun, et al., Mater. Lett.,79, 263, 2012.

15. Qin Zipeng, Li Gang, Ma Yuwei, et al., China Ceramics, 53, 58, 2017.

16. Qin,Zipeng, Ma Yuwei, Li Gang, et al.,New Build. Mater., 6, 88, 2016.

17. QIAN Shuai, LIN Jian, TANG Baoshan, J. Chinese Ceram. Soc., 42, 108, 2014.

18. Yingliang Tian,Ping Lu,Suli Zhang, et al., J.Wuhan, Univ. Technol. Mater. Sci. Ed., 31, 538, 2016.

19. Zhou Yu, Feng Keqin, Wang Haibo,et al., J. Sichuan Univ. (Engin. Scie. Ed.), 46, 192, 2014.

20. Huan Shi, Keqin Feng, Haibo Wang, et al., Int. J. Minerals, Metallurg..Mater, 23, 595, 2016.

21. SONG Qiang,Li Gang,Ma Yuwei,et al., J. Shihezi Univ.(Natural Scie), 31, 510, 2013.

22. Qin,Zipeng, Ma Yuwei, Li Gang,et al., Non-Metallic Mines, 39, 7, 2016.

23. WU Zhenxian, ZHU Shaofeng, LI Ping, et al., J.Funct. Mater., 45, 2114, 2014.

24. WANG Lihua, WANG Dongsheng, Spectr. Spectr. Anal, 25, 1240, 2005.

25. Peng Hui, Bulletin Mineralogy, 26(S1), 198, 2007.

Current number: