Вы здесь

Funct. Mater. 2018; 25 (3): 601-607.

doi:https://doi.org/10.15407/fm25.03.601

Crystallization of the fusible component in Ag/Bi/Ag and Ag/Pb/Ag layered film systems

S.V.Dukarov, S.I.Petrushenko, V.N.Sukhov, R.V.Sukhov

V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine

Abstract: 

The results of studies of the supercooling during the crystallization of a fusible component in Ag/Bi/Ag and Ag/Pb/Ag layered film systems are presented. The crystallization temperatures of metastable melts are determined by using two independent in situ techniques. The value of supercooling and the character of crystallization in Ag/Bi/Ag samples is determined by the condensation mechanism during the bismuth deposition (vapor-crystal or vapor-liquid). This phenomenon is explained by differences in the morphological structure of the films.

Keywords: 
supercooling during crystallization, multilayer films, condensation mechanism.
References: 

1. L.Hu, W.L.Wang, S.J.Yang et al., J. Appl. Phys., 21, 085901 (2017).

2. S.J.Yang, L.Hu, L.Wang, B.Wei, Chem. Phys. Lett., 684, 316 (2017).

3. A.M.Gohn, A.M.Rhoades, N.Wonderling et al., Thermochim. Acta, 655, 313 (2017).

4. Geun Woo Lee, Yong Chan Cho, Byeongchan Lee, Kenneth F.Kelton, Phys. Rev. B, 95, 054202 (2017).

5. Yang Sun, Feng Zhang, Zhuo Ye et al., Mater. Lett., 186, 26 (2017).

6. Pooja Rani, Arun Kumar, B.Vishwanadh et al., Nanoscale, 9, 12283 (2017).

7. D.Porter, K.Eastering, M.Sherif, Phase Transformations in Metals and Alloys, 3rd ed. CRC Press, New York (2009).

8. N.T.Gladkikh, S.V.Dukarov, V.N.Sukhov, I.G.Churilov, Functional Materials, 18, 529 (2011).

9. N.T.Gladkikh, S.V.Dukarov, A.P.Kryshtal, V.I.Larin, Fizika Metallov i Metallovedenie, 85, 51 (1998).

10. N.T.Gladkikh, S.V.Dukarov, V.N.Sukhov, Zeitschrift fuer Metallkunde/Mater. Res. Adv. Techn., 87, 233 (1996).

11. J.H.Hollomon, D.Turnbull, Progr. Metal Phys. 4, 333 (1953).

12. Dieter M.Herlach, Daniel Simons, Pierre-Yves Pichon, Phil. Trans. R. Soc, 376, 20170205 (2018).

13. T.Ishikawa, P.F.Paradis, Crystals, 7, 309 (2017).

14. Z.C.Xia, W.L.Wang, S.B.Luo, B.Wei, Chem. Phys. Lett., 658, 220 (2016).

15. J.P.Mastandrea, J.W.Ager III, D.C.Chrzan, J. Appl. Phys., 122, 105304 (2017).

16. E.N.Latysheva, A.L.Pirozerskii, E.V.Charnaya et al., Phys. Solid State, 57, 131 (2015).

17. Y.Shilyaeva, S.Gavrilov, L.Matyna, J. Therm. Anal. Calor., 118, 937 (2014).

18. H.F.Degenhardt, G.Kellermann, A.F.Craievich, J. Appl. Crystallog., 50, 1590 (2017).

19. M.M.Kolendovs'KY, S.I.Bogatyrenko, O.P.Kryshtal, Metallofizika i Noveishie Tekhnologii, 31, 855 (2009).

20. S.I.Bogatyrenko, A.V.Voznyi, N.T.Gladkikh, A.P.Kryshtal, Fizika Metallov i Metallovedenie, 97, 273 (2004).

21. S.I.Petrushenko, S.V.Dukarov, V.N.Sukhov, J. Nano- and Electron. Phys., 8, 04073 (2016).

22. S.I.Petrushenko, S.V.Dukarov, V.N.Sukhov, Vacuum, 122, 208 (2015).

23. R.I.Bigun, M.D.Buchkovs'ka, N.S.Koltun et al., Metallofizika i Noveishie Tekhnologii, 35, 85 (2013).

24. R.I.Bigun, M.D.Buchkovska, V.M.Gavrilyukh et al., Metallofizika i Noveishie Tekhnologii, 36, 531 (2014).

25. S.I.Petrushenko, S.V.Dukarov, V.N.Sukhov, Probl. Atom. Sci. Techn., 104, 118 (2016).

26. S.Zou, N.Janel, G.C.Schatz, J. Chem. Phys., 120, 10871 (2004).

27. B.Auguie, W.L.Barnes, Phys. Rev. Lett., 101, 143902 (2008).

28. S.I.Petrushenko, S.V.Dukarov, V.N.Sukhov, Vacuum, 142, 29 (2017).

29. M.Matsushima, Y.Ando, S.Dushenko et al., Appl. Phys. Lett., 110, 072404 (2017).

30. S.V.Dukarov, S.I.Petrushenko, V.N.Sukhov, O.I.Skryl, Functional Materials, 23, 218 (2016).

31. N.T.Gladkikh, A.P.Kryshtal, S.I.Bogatyrenko, Techn. Phys., 55, 1657(2010).

Current number: