Вы здесь

Funct. Mater. 2018; 25 (3): 625-631.


Boron removal from metallurgical grade silicon and Si-Sn alloy through slag refining with gas blowing

Rowaid Al-khazraji1,2, Yaqiong Li1,2, Lifeng Zhang1,2

1School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing (USTB), Beijing, 100083, China
2Beijing Key Laboratory of Green Recycling and Extraction of Metal, University of Science &Technology Beijing, Beijing 100083, China


A combined method of slag refining and gas blowing technique were used for boron removal from metallurgical grade silicon and 75%wt Si-Sn alloy using the 45%CaO-45%SiO2-10%CaCl2 slag with the use of Ar gas and Ar-20%O2 mixed gas. Increasing gas flow rate from 50 to 250 ml/min shows enhancement in B removal. At fixed conditions the Ar-20%O2 mixed gas blowing shows a good removal efficiency of boron about 85% and 96% to MG and Si-Sn alloy respectively, compared with the single Ar gas blowing with 78.6% and 88% to MG and Si-Sn alloy respectively. Changes in slag composition representing by decreasing in all compounds especially CaCl2 attached with increase in Al2O3. The B impurities after the treatment found with low intensity in Si matrix but with high intensity in slag phase and Sn phase. Boron removal controlled by mass transfer in slag phase with mass transfer coefficients of 3.38ċ10-4cm.s-1 and 7.2ċ10-5cm.s-1 in Si and Si-Sn alloy respectively.

B removal; metallurgical grade silicon; Si-Sn alloy; slag refining; gas blowing

1. Adolf Goetzberger, Christopher Hebling, Solar Energy Mater. Solar Sells, 62, 1, (2000)

2. Hans Joachim Moller, Claudia Funke, Markus Rinio, Sandra Scholz, Thin Solid Films, 487, 179, (2005).

3. Sergio Pizzini, Solar Energy Mater. Solar Sells, 94, 1528, (2010).

4. Huixian Lai, Liuqing Huang, Huaping Xiong, et.al., Industr. Engin. Chem. Res., 56, 311, (2016).

5. Arafune Koji, Ohishi Eichiro, Sai Hitoshi, et.al., J. Crystal Growth, 308, 5, (2007).

6. Yun Lei, Wenhui Ma, Guoqiang Lv, Kuixian Wei, Shaoyuan Li, Kazuki Morita, Separ. Purification Techn., 173, 364, (2017).

7. K.Suzuki, N.Sano,Thermodynamics for removal of boron from metallurgical silicon by flux treatment, in Tenth EC Photovoltaic Solar Energy Conference,1991, pp. 273-275

8. Jiangtao Wang, Xiaodong Li, Yongmin He, Na Feng, Xiuyun An, Feng Teng, Caitian Gao, Changhui Zhao, Zhenxing Zhang, Erqing Xie, Separation and Purification Technology. 102 (2013) 82-85

9. J. C. S. Pires, A. F. B. Braga, P. R. Mei, Solar Energy Mater. Solar Sells, 79, 347, (2003)

10. N Yuge, M Abe, K Hanazawa, H Baba, et.al., Progress Photovoltaics: Res. Appl, 9 203, (2001)

11. Jijun Wu, Yeqiang Zhou, Wenhui Ma, Min Xu, Bin Yang, Metall.Mater. Trans. B. 48, 22, 2017

12. AA Istratov, T Buonassisi, RJ McDonald, AR Smith, et.al. J. Appl. Phys., 94, 6552, (2003)

13. Ji-jun Wu, Yan-long Li, Kui-xian WEI, YANG Bin, Yong-nian DAI, Trans. Nonferrous Metals Soc. China, 24, 1231, (2014).

14. Y.Wang, X.Ma, K.Morita, Metallurg. Mater. Trans. B. 45 334, (2014)

15. J.Wu, W.Ma, B.Jia, B.Yang, D.Liu, Y.Dai, Journal of Non-Crystalline Solids. 358 (2012) 3079-3083

16. M.D. Johnston, M. Barati, Solar Energy Materials & Solar Cells. 94 (2010) 2085-2090

17. L. A. V.Teixeira, K.Morita, ISIJ Intern., 49 783, (2009).

18. Ernst Christian Koch, Dominik Clement, Propellants, Explosives, Pyrotechnics. 32, 205, (2007).

19. Kichiya Suzuki, Tomonori Kumagai, Nobuo Sano, ISIJ Intern. 32, 630, (1992)

20. David Lynch, Jom. 61,41, (2009)

21. R. H. Hopkins, A. Rohatgi, J. Crystal Growth, 75, 67, (1986).

Current number: