Вы здесь

Funct. Mater. 2018; 25 (4): 665-669.

doi:https://doi.org/10.15407/fm25.04.665

The peculiarities of the properties of ZnSxSe1-x nanocrystals obtained by self-propagating high-temperature synthesis

A.V.Kovalenko, Ye.G.Plakhtii, O.V.Khmelenko

O.Honchar Dnipro National University, 72 Gagarina Ave., 49010 Dnipro, Ukraine

Abstract: 

ZnSxSe1-x nanocrystals of all compounds were obtained by self-propagating high-temperature synthesis. It was found that the obtained samples had dimensions of 55±5 nm and were characterized by a mixed crystalline structure. With increase the x value the fraction of the hexagonal phase in nanocrystals decreased from 65±5 % to 30±5 %, and the fraction of the cubic phase increased in the corresponding ratios. Despite the formation of ZnSxSe1-x solid solutions, according to RCS data, the local environment of Mn2+ impurity ions is not mixed. At a value of 0.2<x&lq;1, the Mn2+ ions were surrounded by sulfur ions, and at x≤0.2 it was surrounded by selenium ions. The change of the Mn2+ ions local environment was accompanied by an abrupt change in the value of the RCS hyperfine structure of the Mn2+ ions from A = 6.88-6.91 mT to A = 6.55 mT. In ZnSxSe1-x nanocrystals with x = 1 and x = 0.9, an EPR line with g = 1.9998 was detected, which is associated with an uncontrolled impurity - Cr+ ions.

Keywords: 
ZnS<sub>x</sub>Se<sub>1-x</sub> nanocrystals, self-propagating high-temperature synthesis, X-ray diffraction analysis, phases composition, crystalline structure, EPR spectrum.
References: 

1. H.K.Sadekar, A.V.Ghule, R.Sharma, J. Alloy. Compd., 509, 18 (2011). https://doi.org/10.1016/j.jallcom.2011.02.089

2. J.Lu, H.Liu, C.Sun et al., Nanoscale, 4, 3 (2012). https://doi.org/10.1039/c1nr90047a

3. D.V.Korbutiak, O.V.Kovalenko, S.I.Budzuliak, Ukr. J. Phys. Rev., 7, 1 (2012).

4. E.A.Levashov, A.S.Mukasyan, A.S.Rogachev, D.V.Shtansky, Int. Mater. Rev., 62, 4 (2016).

5. S.V.Kozitskii, V.P.Pisarskii, O.O.Ulanova, Combust. Explo. Shock., 34, 1 (1998). https://doi.org/10.1007/BF02671814

6. Y.Y.Bacherikov, N.P.Baran., I.P.Vorona et al., J. Mater. Sci.-Mater. El., 28, 12 (2017). https://doi.org/10.1007/s10854-017-6580-8

7. N.E.Korsunska, Y.Y.Bacherikov, T.R.Stara et al., Semiconductors, 47, 5 (2013). https://doi.org/10.1134/S1063782613050138

8. S.V.Kozytckyy, V.P.Pysarskyy, D.D.Polishchuk, Phys. Chem. Sol. State, 4, 2 (2003).

9. T.Taguchi, Y.Kawakami, Y.Yamada, Physica B, 191, 1 (1993). https://doi.org/10.1016/0921-4526(93)90174-5

10. H.X.Chuo, T.Y.Wang, W.G.Zhang, J. Alloy. Compd., 606 (2014).

11. M.F.Bulaniy, A.V.Kovalenko, A.S.Morozov, O.V.Khmelenko, J. Nano Elect. Phys., 9, 2 (2017).

12. A.P.Amosov, I.P.Borovinskaya, A.G.Merzhanov, A.E.Sytschev, Int. J. SHS, 14, 3 (2005).

13. P.A.Gonzalez Beermann, B.R.McGarvey, S.Muralidharan, R.C.Sung, Chem. Mater., 16, 5 (2004).

14. D.A.Reddy, G.Murali, R.P.Vijayalakshmi, B.K.Reddy, Appl. Phys. A, 105, 119 (2011). https://doi.org/10.1007/s00339-011-6563-1

15. M.F.Bulanyi, I.N.Geifman, T.A.Prokof'ev, A.N.Khachapuridze, Inorg. Mater., 33, 12 (1997)

.

Current number: