Вы здесь

Funct. Mater. 2018; 25 (4): 681-683.

doi:https://doi.org/10.15407/fm25.04.681

A novel photoelectrooptical effect based on Freedericksz-type transition in nematic mixtures of azoxy compounds and cyanobiphenyls

L.N.Lisetski1, A.N.Samoilov1, S.S.Minenko1, A.P.Fedoryako2, T.V.Bidna3

1Institute for Scintillation Materials, STCInstitute for Single CrystalsNational Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
2Dept. of Chemistry of Functional Materials, SSI Institute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61072 Kharkiv, Ukraine
3Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Pr., 03028 Kyiv, Ukraine

Abstract: 

In mixtures of nematic liquid crystals with opposite signs of dielectric anisotropy (alkylcyanobiphenyls and azoxybenzenes), a possibility of photoinduced Freedericks-type transition was realized, which could be observed both by optical transmission in a standard geometry and by changes in electric conductivity. UV irradiation leads to lowering of the planar-to-homeotropic transition threshold, and at a certain bias voltage a photoinduced transition could be realized. Trans-cis isomerization of azoxy component decreases the anisometry of its molecules, resulting in higher positive dielectric anisotropy of the material. Prospects of application of the reported effect in optoelectronic devices are discussed.

Keywords: 
nematic liquid crystals, alkylcyanobiphenyls and azoxybenzenes.
References: 

1. L.N.Lisetski, S.S.Minenko, A.N.Samoilov, N.I.Lebovka, J. Mol. Liq., 235, 90 (2017). https://doi.org/10.1016/j.molliq.2016.11.125

2. A.N.Samoilov, S.S.Minenko, A.P.Fedoryako et al., Functional Materials, 24, 197 (2017).

3. C.Chen, P.J.Bos, J.E.Anderson, SID 06 Symposium Digest, 39.3, 1439 (2006).

4. C.Chen, P.J.Bos, J.E.Anderson, Liq. Cryst., 35, 465 (2008). https://doi.org/10.1080/02678290801939244

5. M.I.Serbina, N.A.Kasian, L.N.Lisetski, Crystallography Rep., 58, 155 (2013). https://doi.org/10.1134/S1063774512060119

6. I.P.Ilchishin, L.N.Lisetski, T.V.Mykytiuk, Opt. Mat. Express, 1, 1484 (2011). https://doi.org/10.1364/OME.1.001484

7. A.N.Samoilov, S.S.Minenko, L.N.Lisetski et al., Liq. Cryst., 45, 250 (2018). https://doi.org/10.1080/02678292.2017.1314560

8. R.Manohar, K.K.Panday, A.K.Srivastava et al., J. Phys. Chem. Solids, 71, 1311 (2010). https://doi.org/10.1016/j.jpcs.2010.05.011

9. L.N.Lisetski, V.D.Panikarskaya, N.A.Kasian et al., Proc. SPIE, 6023, 6023OF (2005).

10. D.Aronzon, E.P.Levy, P.J.Collings et al., Liq. Cryst., 34, 707 (2007). https://doi.org/10.1080/02678290701267480

.

Current number: