Вы здесь

Funct. Mater. 2018; 25 (4): 695-701.

doi:https://doi.org/10.15407/fm25.04.695

Some physico-mechanical properties of composite biomaterials on the basis of biogenic hydroxyapatite with magnetic additives

O.M.Otychenko, T.Ye.Babutina, D.P.Ziatkevich, Yu.G.Bezimyanniy, A.M.Kolesnykov, O.M.Budylina, L.S.Protsenko, O.Yu.Koval, I.V.Uvarova

I.Frantsevich Institute for Problems of Materials Science, 3 Krzhizhanovsky Str., 03680 Kyiv-142, Ukraine

Abstract: 

The effect of ferromagnetic additives in the form of magnetite on composite systems based on biogenic hydroxyapatite (BHA) and obtained by physico-mechanical and chemical methods was studied. It was established that the specific density of BHA/Fe3O4 powder obtained by physico-mechanical method for introduction of magnetite is close to that of trabecular bone. Herewith, the density of heat-treated pressed samples from this biomaterial is almost equal to that of cortical bone. Experiments in vitro revealed that a decrease in the material bioresorption is bound with a gradual increase in the amount of Ca2+ in the filtrates accompanied by a sharp decrease in PO4-3, Fe2+ and Fe3+ amounts within 5-7 days. The characteristics of elasticity were established to depend on the porosity and chemical composition of samples, decreasing with introduction of ferromagnetic additives that is probably due to the release of thermally induced carbon dioxide while decompositioning of iron oxalates. The results of this study indicate the expediency of using BHA-based biomaterials in orthopedic practice for restoration of bone tissue functions.

Keywords: 
biogenic hydroxyapatite, magnetite, bioresorption, mechanical properties.
References: 

1. A.Herrera, J.Mateo, J.Gil-Albarova et al., BioMed. Res. Int., 2015, ID 386461, (2015).

2. T.M.Keaveny, W.C.Hayes, Mechanical Properties of Cortical and Trabecular Bone in Bone: A Treatise, ed. B.K.Hall. CRC Press, New York (1992).

3. T.M.Keaveny, E.F.Morgan, Yeh Bone Mechanics in Yeh Standard Handbook of Biomedical Engineering & Design, ed. M.Kutz. McGraw-Hill, New York (2003).

4. I.V.Uvarova, P.P.Gorbyk, S.V.Gorobets et al., Nanomaterials of Medical Application. Naukova Dumka, Kyiv (2014).

5. N.Kurgan, V.Karbivskyy, V.Kasyanenko, Nanoscale Res. Lett., 10, 41 (2015). https://doi.org/10.1186/s11671-015-0770-1

6. A.Mishra, N.Khobragade, K.Sikdar et al., Adv. Mater. Sci. Eng., 2017 , doi: 10.1155/2017/9814624 (2017). https://doi.org/10.1155/2017/9814624

7. S.Panseri, C.Cunha, T.D.D'Alessandro et al., PLoS ONE, 6, 1 (2010).

8. Ie.V.Pylypchuk, Yu.O.Zubchuk, A.L.Petranovskaya et al., Chem., Phys. Technol. Surf., 3, 326 (2015).

9. Q.Li, G.Zhou, T.Wang et al., J. Nanomaterials, in press, doi: 10.1155/2015/835604 (2015). https://doi.org/10.1155/2015/835604

10. F.Marquez, G.M.Herrera, T.Campo et al., Nanoscale Res. Lett., 7, 210 (2012). https://doi.org/10.1186/1556-276X-7-210

11. Y.I.Golovin, Studies of TSK, 18, 1954 (2013).

12. K.J.Tapan, M.K.Reddy, M.A.Morales et al., Mol. Pharm., 5, 316 (2008). https://doi.org/10.1021/mp7001285

13. S.Prijic, J.Scancar, R.Romih et al., Membrane Biol., 236, 167 (2010). https://doi.org/10.1007/s00232-010-9271-4

14. D.S.Kuznetsova, P.S.Timashev, V.N.Bagratashvili et al., Modern Technol. Med., 6, 201 (2014).

15. J.V.Rau, I.Cacciotti, A.De Bonis et al., App. Surf. Sci., 307, 301 (2014). https://doi.org/10.1016/j.apsusc.2014.04.030

16. Ya.Li, C.T.Nam, C.P.Ooi, J. Physics: Conf. Series., 187, (2009).

17. X.Lu, Y.Leng, Biomaterials, 26, 1097 (2005). https://doi.org/10.1016/j.biomaterials.2004.05.034

18. L.Ploux, A.Ponche, K.Anselme, J. Adh. Sci. Tech., 13-14, 2165 (2010).

19. D.-L. Trandafir, C. Merestean, R.V.F. Turcu et. al., Ceram. Int., 40, 11071 (2014). https://doi.org/10.1016/j.ceramint.2014.03.124

20. O. Kaygili, S.V. Dorozhkin, T. Ates et. al., Ceram. Int., 40, 9395 (2014). https://doi.org/10.1016/j.ceramint.2014.02.009

21. E.M. Muzquiz-Ramos, D.A. Cortes-Hernandez, J. Escobedo-Bocardo, Mater. Lett., 64, 1117 (2010). https://doi.org/10.1016/j.matlet.2010.02.025

22. A. Tampieri, T. D'Alessandro, M. Sandri et. al., Acta Biomater., 8, 843 (2012). https://doi.org/10.1016/j.actbio.2011.09.032

23. D. Gopi, M.T. Ansari, E. Shinyjoy et. al., Spectrochim. Acta Part A, 87, 245 (2012). https://doi.org/10.1016/j.saa.2011.11.047

24. K. Donadel, M.D.V. Felisberto, M.C.M. Laranjeira et. al., Anais da Academia Brasileira de Ciencias, 89, 179 (2009). https://doi.org/10.1590/S0001-37652009000200004

25. L. Dong, Z. Zhu, Y. Qui et. al., Chem. Eng. J., 165, 827 (2010). https://doi.org/10.1016/j.cej.2010.10.027

26. T. Iwasaki, Mater. Sci. - Adv. Topics, in press, doi: 10.57725/54344 (2017).

27. S. Sprio, S. Panseri, A. Adamiano et. al., Front. in Nanosci. and Nanotech., 3, 1 (2017).

28. UA Patent 61938 (2003).

29. O.M.Otychenko, T.Ye.Babutina, O.R.Parkhomey et al., Chem., Phys. Technol. Surf., 8, 10 (2017).

30. O.M.Otychenko, N.D.Pinchuk, O.R.Parkhomey et al., Nanostruct. Mater. Sci., 2, 45 (2014).

31. Yu.G.Bezimyanniy, Akustychn. Visnyk. 2, 3 (2006).

32. Yu.G.Bezimyanniy, E.A.Kozirackiy, A.N.Kolesnikov et al., Visnyk Natsionalnogo Tehnichn. Universutetu KhPI, 19, 15 (2014).

33. O.Otychenko, T.Babutina et al., Nanosistem., Nanomater., Nanotehnol., 15, 185 (2017)

.

Current number: