Funct. Mater. 2018; 25 (4): 748-753.

doi:https://doi.org/10.15407/fm25.04.748

Influence of chemical components La and heat treatment on the microstructure and mechanical property of AlSi7Mg aluminum alloy

Yongyue Liu1,2,3

1 School of Materials Science and Technology, University of Science and Technology Beijing, Beijing 100083, China
2 Forging Technology Center, Beijing Research Institute of Mechanical and Electrical Technology, Beijing 100083, China
3 Technology Center, Ningbo Heli Mould Technology Shareholding Co., Ltd., Ningbo 315700, China

Abstract: 

The effect of La additives on aluminum alloy AlSi7Mg and the casting temperature on its microstructure and mechanical properties was studied. It has been found that the addition of La has a significant improvement in the structure of the aluminum alloy and has a large effect on tensile strength and percentage elongation. When the La content was 0.2%, the sample property was the best. With increasing solution temperature, the grain size of the samples increased, the spherical coefficient decreased, the density decreased, and the mechanical properties deteriorated. When the temperature of the solution was 540° C, the microstructure and mechanical properties of the samples were the best. This indicates that the proper addition of chemical components and the control of the temperature of the solution can improve the properties of the aluminum alloy billet.

Keywords: 
AlSi<sub>7</sub>Mg, aluminum alloy, chemical components, rare-earth metals, heat treatment, microstructure, mechanical properties.
References: 

1. R. Horvath, A. Dregelyi-Kiss, Measurement, 65, 181 (2015). https://doi.org/10.1016/j.measurement.2015.01.013

2. R. Menini, Z. Ghalmi, M. Farzaneh, Cold Reg. Sci. Technol., 65, 65 (2011). https://doi.org/10.1016/j.coldregions.2010.03.004

3. S. J. Yan, S. L. Dai, X. Y. Zhang et al., Mater. Sci. Eng. A, 612, 440 (2014). https://doi.org/10.1016/j.msea.2014.06.077

4. H. Fang, H. Liu, H. Yin et al., Hot Work. Technol., 0(8), 74 (2017).

5. S. Z. Wang, M. Zhao, M. L. Hu et al. Chin. J. Nonferr. Metals, 25, 1428- (2015).

6. P. Gurusamy, S. B. Prabu, R. Paskaramoorthy, Adv. Manufact. Proc., 30, 367 (2015).

7. X. J. Wang, F. G. Cong, Q. F. Zhu, J. Z. Cui, Sci. China Technol. Sci., 55, 5104 (2012).

8. B. Han, W. Tao, Y. Chen, H. Li, Opt. Laser Technol., 93, 99 (2017). https://doi.org/10.1016/j.optlastec.2017.02.004

9. H. J. Liu, X. Zhang, L. F. Xiao, J. Mach. Design, 28, 18 (2011).

10. H. Dan, Z. Zhu, H. Geng et al., J. Mater. Eng., 45, 662 (2017).

11. M. T. Azhagan, B. Mohan, A. Rajadurai, Int. J. Eng. Technol., 6, 183 (2014).

12. Y. Guo, M. Li, H. Xu, et al., Int. J. Adv. Manufact. Technol., 97, 1995 (2018). https://doi.org/10.1007/s00170-018-2057-z

13. B. Poulin, R. Mcneil, Mater. Sci. Forum, 830-831, 131 (2015

.

Current number: