Funct. Mater. 2018; 25 (4): 788-794.

doi:https://doi.org/10.15407/fm25.04.788

Production of submicron Al2O3 powders by electrochemical dissolution of aluminum in the presence of nitric acid

S.S.Balabanov1, V.V.Drobotenko1, D.A.Permin1, E.Ye.Rostokina1, M.S.Boldin2, A.A.Murashev2

1Devyatykh Institute of Chemistry of High_Purity Substances, Russian Academy of Sciences, 49 Tropinin Str., 603950 Nizhny Novgorod, Russia
2Lobachevsky State University of Nizhny Novgorod, Research and Development Institute of Physics and Technology, 23 Gagarin Ave., 603950 Nizhny Novgorod, Russia

Abstract: 

A cost-effective and easily scalable method for the synthesis of ultrapure submicron alumina powders with a narrow particle size distribution and high sinterability is proposed. Aqueous solutions of aluminum hydroxide nanoclusters obtained by AC electrochemical dissolution of aluminum metal in the presence of nitric acid were used as a precursor. Hot pressing and vacuum sintering were used to evaluate the possibility of obtaining Al2O3 optical ceramics from synthesized powders.

Keywords: 
Alumina, fine powder, sintering, electrochemical dissolution, ceramics.
References: 

1. Y.Wu.Y.Zhang, X.Huang, J.Guo, Ceram. Int., 27, 265 (2001). https://doi.org/10.1016/S0272-8842(00)00074-2

2. M.L.Panchula, J.Y.Ying, Nanostructured Mater., 9, 161 (1997). https://doi.org/10.1016/S0965-9773(97)00043-3

3. V.D.Zhuravlev et al., Ceram. Int., 39, 1379 (2013). https://doi.org/10.1016/j.ceramint.2012.07.078

4. J.Li, Y.Pan, C.Xiang et al,, Ceram. Int., 32, 587 (2006). https://doi.org/10.1016/j.ceramint.2005.04.015

5. P.K.Sharma, M.H.Jilavi, D.Burgard et al., J. Am. Ceram. Soc., 81, 2732 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02687.x

6. S.Woo, J.-H.Park, C.K.Rhee et al., Microelectron. Eng., 89, 89 (2012). https://doi.org/10.1016/j.mee.2011.03.146

7. A.F.Dresvyannikov, E.V.Petrova, M.A.Tsyganova, Russ. J. Phys. Chem. A, 84, 642 (2010). https://doi.org/10.1134/S0036024410040217

8. V.V.Korobochkin, V.I.Kosintsev, L.D.Bystritskii, E.P.Kovalevskii, Inorg. Mater., 38, 914 (2002). https://doi.org/10.1023/A:1020042208786

9. D.Pathania, R.Katwal, H.Kaur, Int. J. Miner. Metall. Mater., 23, 358 (2016). https://doi.org/10.1007/s12613-016-1245-9

10. W.Wang et al., Proc. Natl. Acad. Sci., 110, 18397 (2013). https://doi.org/10.1073/pnas.1315396110

11. B.L.Fulton et al., Chem. Mater., 29, 7760 (2017). https://doi.org/10.1021/acs.chemmater.7b02106

12. V.V.Drobotenko, S.S.Balabanov, T.I.Storozheva, Inorg. Mater., 46, 295 (2010). https://doi.org/10.1134/S0020168510030155

13. S.S.Balabanov, E.M.Gavrishchuk, V.V.Drobotenko et al., Inorg. Mater., 50, 830 (2014). https://doi.org/10.1134/S0020168514080032

14. M.Shojaie-Bahaabad, E.Taheri-Nassaj, Mater. Lett., 62, 3364 (2008). https://doi.org/10.1016/j.matlet.2008.03.012

15. B.Sathyaseelan, I.Baskaran, K.Sivakumar, Soft Nanosci. Lett., 3, 69 (2013). https://doi.org/10.4236/snl.2013.34012

16. J.A.Jimenez, I.Padilla, A.Lopez-Delgado et al., Int. J. Appl. Ceram. Technol., 12, E178 (2015)

.

Current number: