Вы здесь

Funct. Mater. 2018; 25 (4): 802-808.


Properties of MnO doped graphene synthesized by co-precipitation method

M. Ilman Nur Sasongko3, Poppy Puspitasari1,2, Sukarni1, Cepi Yazirin3

1Mechanical Engineering Department, Engineering Faculty, Universitas Negeri Malang, Semarang Street No. 5, Malang, East Java, Indonesia
2Center of Advanced Materials, Universitas Negeri Malang, Semarang Street No. 5, Malang, East Java, Indonesia, 65140
3Master Student, Postgraduate Program, Universitas Negeri Malang, Semarang Street No. 5, Malang, East Java, Indonesia


MnO doped graphene specimens were synthesized using a simple and cost-effective method, i.e. co-precipitation. The characterization of specimens was done through various techniques, such as X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), and Fourier Transform Infrared (FTIR). Single phase pattern on [222], crystallite size, and d-spacing were confirmed by XRD results. The nanostructure morphology was observed using SEM. FTIR showed the shifted peaks and changes in the intensity of molecular bonds of the material. The specimens were sintered for 1 h at various temperatures of 500 °C, 600 °C, and 700 °C. The XRD characterization showed that sintering at 700 °C resulted in MnO and GO peaks with the highest intensity, but the specimen sintered at 600 °C had the best grain size of 70.39 nm. The morphology characterization by SEM showed a change of shape from triangle to nanosphere with agglomeration. The results of FTIR showed that the shifts in C-O and Mn-O groups were followed by an increase in N-H, C-H, C=O, C-O, and Mn-O. The results of this study suggest that single-phase MnO doped graphene was successfully synthesized using the co-precipitation method.

characterization, co-precipitation, graphene, MnO, synthesis.

1. C. C. Lin, C. J. Chen, R. K. Chiang, J. Cryst. Growth, 338, 152, 2012. https://doi.org/10.1016/j.jcrysgro.2011.10.022

2. B. K. Pandey, A. K. Shahi, R. Gopal, Appl. Surf. Sci., 283, 430, 2013. https://doi.org/10.1016/j.apsusc.2013.06.126

3. K. I. Bolotin et al., Solid State Commun., 146, 351, 2008. https://doi.org/10.1016/j.ssc.2008.02.024

4. C. S. Park et al., Appl. Phys. Lett., 102, 2013.

5. G. Zhao et al., J. Mater. Chem. A, 3, 297, 2015. https://doi.org/10.1039/C4TA05376A

6. X. Dai, W. Shi, H. Cai, R. Li, G. Yang, Solid State Sci., 27,17, 2014. https://doi.org/10.1016/j.solidstatesciences.2013.11.003

7. J. Lim et al., J. Appl. Phys., 113, 18, 2013.

8. W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc., 80, 339, 1958. https://doi.org/10.1021/ja01539a017

9. X. Wu et al., Int. J. Hydrogen Energy, 41, 16087, 2016. https://doi.org/10.1016/j.ijhydene.2016.04.216

10. F. Cheng et al., Inorg. Chem., 45, 20384, 2006.

11. C. Chen, W. Fu, C. Yu, Mater. Lett., 82, 133, 2012. https://doi.org/10.1016/j.matlet.2012.04.041

12. Himadri B Bohindar and kamla rawat, Design of Nanostructures. 2017.

13. Muflihatun, S. Shofiah, E. Suharyadi, vol. XIX, November, pp. 20-25, 2015.

14. R. C. Cammarata, Mater. Sci., 580, 1996.

15. D. Rubi, J. Fontcuberta, A. Calleja, et. al. Phys. Rev. B - Condens. Matter Mater. Phys., 75, 1, 2007.

16. O. D. Jayakumar, H. G. Salunke, R. M. Kadam, et. al. Nanotechnology, 17, 1278, 2006. https://doi.org/10.1088/0957-4484/17/5/020

17. W. Liu, X. Tang, Z. Tang, J. Appl. Phys., 114, 12, 2013.

18. P. Sharma et al., Nat. Mater., 2, 673, 2003. https://doi.org/10.1038/nmat984

19. S. A. Ahmed, Res. Phys., 7, 604, 2017.

20. R. Wu, J. Qu, Y. Chen, Water Res., 39, 630, 2005. https://doi.org/10.1016/j.watres.2004.11.005

21. P. Li et al., Ceram. Int., 39, 7773, 2013. https://doi.org/10.1016/j.ceramint.2013.03.036

22. Q. Chu et al., Chempluschem, 77, 872, 2012. https://doi.org/10.1002/cplu.201200178

23. N. B. Yahya, H. Daud, N. A. Tajuddin, et.al., J. Nano Res., 1, 25, 2010. https://doi.org/10.4028/www.scientific.net/JNanoR.11.25

24. N. B. Yahya, P. Puspitasari, K. K. K. Koziol, et.al., J. Nano Res., 16, 119, 2012. https://doi.org/10.4028/www.scientific.net/JNanoR.16.119

25. A. Cahyana and A. Marzuki, Pros. Math. Sci. Forum 2014, 23, 2014.

26. L. M. Corneal, S. J. Masten, S. H. R. Davies, et.al., J. Memb. Sci., 360, 292, 2010. https://doi.org/10.1016/j.memsci.2010.05.026

27. R. Narain, Eng. Carbohydrate-Based Mater. Biomed. Appl. Polym. Surfaces, Dendrimers, Nanoparticles, Hydrogels, 1720, 2010.

28. S. Selvam, B. Balamuralitharan, S. N. Karthick, et.al., Anal. Meth., 8, 7937, 2016. https://doi.org/10.1039/C6AY02804G


29. S.-D. Jiang et al., J. Mater. Chem. A, 2, 17341, 2014. https://doi.org/10.1039/C4TA02882A

30. H. Li, Y. He, V. Pavlinek, Q. Cheng, P. Saha, and C. Li, J. Mater. Chem. A, 3, , 17165, 2015.

31. I. Ardelean and C. Horea, J. Optoelectron. Adv. Mater., 8, 1111, 2006.

32. L. Zhang, R. Jamal, Q. Zhao, M. Wang, and T. Abdiryim, Nanoscale Res. Lett., 10, 1, 2015. https://doi.org/10.1186/1556-276X-10-1

Current number: