Funct. Mater. 2019; 26 (1): 107-113.

doi:https://doi.org/10.15407/fm26.01.107

Different effect of polymer-incorporated nanoparticles of Au and Ag on hematoporphyrin interaction with graft polymers

M.Y.Losytskyy, R.A.Kharchenko, Y.I.Harahuts, E.A.Shirinyan, Y.V.Malinovska, N.V.Kutsevol, V.M.Yashchuk

Taras Shevchenko National University of Kyiv, 64/13 Volodymyrs'ka Str., 01601 Kyiv, Ukraine

Abstract: 

One of the ways to improve the efficiency of photodynamic therapy is to enhance the accumulation of the photosensitizer (PS) in the tumor; for this, either polymers or metal nanoparticles (NP) could be used. Here we studied the effect of Au and Ag nanoparticles (AuNPs and AgNPs, respectively) synthesized in situ in solution of non-charged and anionic polymers on spectral properties of PS hematoporphyrin (HP) as well as on 1O2 generation by this compound (revealed by 1O2 emission at 1275 nm). The star-like copolymer Dextran-graft-Polyacrylamide (D-g-PAA) and its anionic form (D-g-PAAan) were used as polymer matrices for nanosystems preparation. Absorption and fluorescence spectra show that HP molecules bind to D-g-PAA and D-g-PAAan in water that leads to the destruction of HP aggregates; these changes are accompanied by increase of 1O2 generation. Meanwhile, in the presence of polymers with incorporated AgNPs (D-g-PAA/Ag and D-g-PAAac/Ag) the mentioned effect is stronger as compared to corresponding polymers without incorporated NPs. Thus AgNPs affect the graft polymers interaction with HP. Contrarily, the presence of both polymers with incorporated AuNPs enhances HP aggregation; besides, in the case of non-charged polymer with gold nanoparticles D-g-PAA/Au, Au nanoparticles induce appearing of different HP form, presumably protonated one. Effect of Ag and Au nanoparticles on fluorescent properties of HP is mainly determined by the effect of these NPs on aggregation of HP (and, in the case of D-g-PAA/Au, by appearing of different HP form). As for HP-sensitized singlet oxygen luminescence, effect of AgNPs is also mainly related to aggregation destruction, while this of Au nanoparticles could have other mechanisms as well.

Keywords: 
photodynamic therapy, chlorin e6, metal nanoparticles, graft polymers, singlet oxygen.
References: 

1. P.Agostinis, K.Berg, K.A.Cengel et al., Am. Cancer Soc., 61, 250 (2011). https://doi.org/10.3322/caac.20114

2. Z.Huang, Technol. Cancer Res. Treat. 4, 283 (2005). https://doi.org/10.1177/153303460500400308

3. R.R.Allison, Future Oncol., 10, 123 (2014). https://doi.org/10.2217/fon.13.176

4. J.Xu, J.Gao, Q.Wei, J. Nanomaterials, 2016, 8507924 (2016).

5. B.Lkhagvadulam, J.H.Kim, I.Yoon, Y.K.Shim, Biomed. Res. Int., 2013, 720579 (2013). https://doi.org/10.1155/2013/720579

6. H.A.Isakau, M.V.Parkhats, V.N.Knyukshto et al., J. Photochem. Photobiol. B, 92, 165 (2008). https://doi.org/10.1016/j.jphotobiol.2008.06.004

7. P.Telegeeva, N.Kutsevol, S.Filipchenko, G.Telegeev, in: Chemical Engineering of Polymers Production of Functional and Flexible Materials, ed. by O.V.Mukbaniany, M.J.Abadie, T.Tatrishvili, Apple Academic Press, Part 2, Chapter 15, 11p.

8. M.Yu.Losytskyy, I.V.Madan, N.V.Kutsevol et al., Mol. Cryst. Liq. Cryst., 589, 226 (2014). https://doi.org/10.1080/15421406.2013.872836

9. I.Madan, M.Losytskyy, V.Yashchuk et al., Mol. Cryst. Liq. Cryst., 536, 17 (2011). https://doi.org/10.1080/15421406.2011.538324

10. N.F.Gamaleia, I.O.Shton, Photodiagnosis Photodyn. Ther., 12, 221 (2015). https://doi.org/10.1016/j.pdpdt.2015.03.002

11. Y.Cheng, A.C.Samia, J. Li et al., Langmuir, 26, 2248 (2010). https://doi.org/10.1021/la902390d

12. X.Huang, M.A.El-Sayed, Alexandria J. Med., 47, 1 (2011). https://doi.org/10.1016/j.ajme.2011.01.001

13. E.B.Dickerson, E.C.Dreaden, X.Huang et al., Canc. Lett., 269, 57 (2008). https://doi.org/10.1016/j.canlet.2008.04.026

14. T.Y.Ohulchanskyy, A.Kopwitthaya, M.Jeon et al., Nanomed.:Nanotechnol. Biol. Med., 9, 1192 (2013). https://doi.org/10.1016/j.nano.2013.05.012

15. V.Amendola, R.Pilot, M.Frasconi et al., J. Phys.:Condens. Matter, 29, 203002 (2017). https://doi.org/10.1088/1361-648X/aa60f3

16. D.K.Kelleher, O.Thews, A.Scherz et al., British J. Canc., 89, 2333 (2003). https://doi.org/10.1038/sj.bjc.6601457

17. G.M.Vlasceanu, S.Marin, R.E.Tiplea et al., in: Nanobiomaterials in Cancer Therapy. Applications of Nanobiomaterials, ed. by A.M. Grumezescu, Elsevier (2016), p.29. https://doi.org/10.1016/B978-0-323-42863-7.00002-5

18. X.Liu, G.Shan, J.Yu et al., AIP Adv., 7, 025308 (2017); https://doi.org/10.1063/1.4977554

19. V.A.Chumachenko, I.O.Shton, E.D.Shishko et al., in: Nanophysics, Nanophotonics, Surface Studies, and Applications, ed. by O.Fesenko, L.Yatsenko. Springer Proceedings in Physics, Springer, Cham, 183, 379 (2016).

20. N.Kutsevol, T.Bezugla, M.Bezuglyi, M.Rawiso, Macromol. Symp., 317-318, 82 (2012). https://doi.org/10.1002/masy.201100087

21. N.Kutsevol, M.Bezuglyi, M.Rawiso, T.Bezugla, Macromol. Symp., 335, 12 (2014). https://doi.org/10.1002/masy.201200115

22. N.V.Kutsevol, V.A.Chumachenko, M.Rawiso et al., J. Struct. Chem., 56, 1016 (2015). https://doi.org/10.1134/S0022476615050200

23. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, Third ed. Springer Science+Business Media, New York (1999).

24. Y.Tinamoto, M.Takayama, I.Inokuchi et al., Bull. Chem. Soc. Jpn., 59, 3308 (1986). https://doi.org/10.1246/bcsj.59.3308

25. D.Kuznetsov, Yu.Myagchenko, O.Slobodyanyuk, Ukr. J. Phys., 59, 215 (2014). https://doi.org/10.15407/ujpe59.03.0215

.

Current number: