Funct. Mater. 2019; 26 (1): 114-120.

doi:https://doi.org/10.15407/fm26.01.114

Research of crack initiation and propagation under loading for providing impact resilience of protective coating

O.O.Sapronov1, A.V.Buketov1, P.O.Maruschak2, S.V.Panin3,4, M.V.Brailo1, S.V.Yakushchenko1, A.V.Sapronova1, O.V.Leshchenko1, A.Menou5

1Kherson State Maritime Academy, 20 Ushakov Ave., 73009 Kherson, Ukraine
2Ternopol I. Pul'uj National Technical University, 56 Ruska Ave., 46001 Ternopil, Ukraine
3Institute of Strength Physics and Materials Science Siberian Branch of the Russian Academy of Science, 2/4 Academicheskii Ave., 634055 Tomsk, Russia
4National Research Tomsk Polytechnic University, 30 Lenin Ave., 634050 Tomsk, Russia
5International Academy of Civil Aviation, Casablanca, Morocco

Abstract: 

The analysis of destruction process under the impact loading of developed epoxy composites with different content of carbon nanotubes is carried out. Introduction of nanoparticles into the epoxy binder at the optimal content of q = 0.010 pts·wt. allows 3 times increase of impact resilience relative to the epoxy matrix. The loading value at the moment of material destruction, the value of critical strain and the crack propagation rate in time to the materials destruction on the impact testing machine RKP-300 for high-speed loading are established. By the method of optical and electron microscopy it is established that the uniformity of particles distribution of carbon nanotubes influences the morphology of nanocomposites, and hence the properties of the formed materials.

Keywords: 
carbon nanotubes, impact resilience, fracture surface, crack propagation.
References: 

1. O.Sapronov, P.Maruschak, N.Buketova et al., in: AIP Conf. Proc. Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures, in Tomsk, Russia (2016).

2. A.V.Buketov, O.O.Sapronov, M.V.Brailo, V.L.Aleksenko, Materials Science, 49, 696 (2014). https://doi.org/10.1007/s11003-014-9664-0

3. Yu.V.Suvorova, S.I.Alekseeva, M.A.Fronya, I.V.Viktorova, Diagnostika Mater., 78, 1357 (2013). https://doi.org/10.1134/S0020168513150089

4. E.A.Lysenkov, V.V.Klepko, V.M.Golovanets, V.L.Demchenko, Ukr. J. Phys., 59, 906 (2014). https://doi.org/10.15407/ujpe59.09.0906

5. A.Buketov, P.Maruschak, O.Sapronov et al., Molecular Crystals and Liquid Crystals, 628, 167 (2016). https://doi.org/10.1080/15421406.2015.1137122

6. A.Buketov, P.Maruschak, O.Sapronov, D.Zinchenko et al., Transport, 31, 333 (2016). https://doi.org/10.3846/16484142.2016.1212267

7. N.G.Leonova, V.M.Mikhal'chuk, Y.P.Mamunya et al., Polymer Science Series D, 6, 210 (2013). https://doi.org/10.1134/S1995421213030131

8. R.V.Dinzhos, N.M.Fialko, E.A.Lysenkov, J. of Nano-Electron. Phys., 6, 01015-1 (2014).

9. E.A.Lysenkov, V.V.Klepko, I.P.Lysenkova. J. Phys. Stud., 21, 4701-1 (2017).

10. E.A.Lysenkov, Z.A.Haholkina, E.V.Lobko et al., Mater. Scien., 53, 14 (2017). https://doi.org/10.1007/s11003-017-0037-3

11. A.V.Buketov, N.A.Dolgov, A.A.Sapronov et. al., Strength Mater., 49, 473 (2017). https://doi.org/10.1007/s11223-017-9888-y

12. A.V.Buketov, N.A.Dolgov, A.A.Sapronov, V.D.Nigalatii, Strength Mater., 50, 425 (2018). https://doi.org/10.1007/s11223-018-9986-5

13. A.V.Buketov, A.A.Sapronov, N.N.Buketova et al., Composites: Mechanics, Computations, Applications, 9, 157 (2018). https://doi.org/10.1615/CompMechComputApplIntJ.v9.i2.30

14. A.V.Buketov, A.O.Sapronov, M.V.Brailo et al., Mech. Adv. Mater. Struct., 1537-6532, 1 (2018). https://doi.org/10.1080/15376494.2018.1495788

15. A.V.Buketov, A.V.Sapronova, O.V.Leshchenko et al., Naukovi Notatky, 61, 13 (2018)

1. O.Sapronov, P.Maruschak, N.Buketova et al., in: AIP Conf. Proc. Advanced Materials with Hierarchical Structure for New Technologies and Reliable Structures, in .

Current number: