Funct. Mater. 2019; 26 (1): 131-151.
Evolution of vacancy pores in bounded particles
1Institute for Single Crystals, NAS Ukraine, Nauky Ave. 60, Kharkov 61001, Ukraine
2V.N. Karazin Kharkiv National University 4 Svobody Sq., Kharkov 61022, Ukraine
In the present work, the behavior of vacancy pore inside of spherical particle is investigated. On the assumption of quasistationarity of diffusion fluxes, the nonlinear equation set was obtained analytically, that describes completely pore behavior inside of spherical particle. Limiting cases of small and large pores are considered. The comparison of numerical results with asymptotic behavior of considered limiting cases of small and large pores is discussed.
1. D.L. Schodek, P. Ferreira, M.F. Ashby, Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers and Architects, Elsevier Science and Technology, Oxford, United Kingdom, (2009).
2. C. Altavilla, En. Ciliberto, Inorganic Nanoparticles: Synthesis, Applications, and Perspectives, CRC Press, (2016). https://doi.org/10.1201/b10333
3. S. Myhra, J. C. Riviere , Characterization of Nanostructures, CRC Press, (2012). https://doi.org/10.1201/b12176
4. Y. Yin, R.M. Rioux, C.K. Erdonmez, S. Hughes et al., Science, 304, 711 (2004). https://doi.org/10.1126/science.1096566
5. C.M. Wang, D.R. Baer, L.E. Thomas et al., J. Appl. Phys., 98, 94308 (2005). https://doi.org/10.1063/1.2130890
6. Y. Yin, C.K. Erdonmez, A. Cabot et al., Adv. Funct. Mater., 16, 1389 (2006). https://doi.org/10.1002/adfm.200600256
7. A. Cabot, V. F. Puntes, E. Shevchenko et al., J. Am. Chem. Soc., 129, 10358 (2007). https://doi.org/10.1021/ja072574a
8. H.J. Fan, M. Knez, R. Scholz et al., Nano Lett}., 7, 993 (2007). https://doi.org/10.1021/nl070026p
9. R. Nakamura, J. G. Lee, D. Tokozakura et al., Mater. Lett., 61, 1060 (2007). https://doi.org/10.1016/j.matlet.2006.06.039
10. R. Nakamura, D. Tokozakura, H. Nakajima et al., J. Appl. Phys., 101, 07430 (2007). https://doi.org/10.1063/1.2711383
11. D. Tokozakura, R. Nakamura, H. Nakajima et al., Mater. Res., 22, 2930 (2007). https://doi.org/10.1557/JMR.2007.0362
12. R. Nakamura, J.-G. Lee, H. Morix, and H. Nakajima, Philos. Mag., 88, 257 (2008). https://doi.org/10.1080/14786430701819203
13. R. Nakamura, D. Tokozakura, J.-G. Lee et al., Acta Mater., 56, 5276 (2008). https://doi.org/10.1016/j.actamat.2008.07.004
14. R. Nakamura, G. Matsubayashi, H. Tsuchiya et al., Acta Mater.} 57, 5046 (2009). https://doi.org/10.1016/j.actamat.2009.07.006
15. C.E. Carlton, L. Rabenberg, P.J. Ferreira, Philos. Mag. Lett., 88, 715 (2008). https://doi.org/10.1080/09500830802307641
16. A.V. Ragulia and V.V. Skhorohod, Consolidated Nanostructural Materials, Naukova Dumka, Kiev, (2007) [in Russian].
17. I.M. Lifshits and V.V. Slyozov, JETP 8, 331 (1959).
18. Ja.E. Geguzin and M.A. Krivoglaz, Motion of Macroscopic Inclusions in Solid Matter, Metallurgy, Moscow, 1971 [in Russian].
19. P.G. Cheremskoy, V.V. Slyozov, and V.I. Betehin, Pores in Solid Matter, Energoatomizdat, Moscow, 1990 [in Russian].
20. V.V. Slezov and V.V. Sagalovich, Sov. Phys. Usp., 30, 23 (1987). https://doi.org/10.1070/PU1987v030n01ABEH002792
21. V.G. Baryakhtar, A.V. Tur, and V.V. Yanovsky, Functional Materials, 8, 415 (2001).
22. L.A. Maximov and A.I. Ryazanov, Phys. Met. Metallogr., 41, 284 (1976)[in Russian].
23. V.I. Dubinko, A.V. Tur, A.A.Turkin and V.V. Yanovsky, Phys. Met. Metallogr., 68, 17 (1989).
24. T.V. Zaporozhets, A.M. Gusak, and O.N. Podolyan, Usp. Fiz. Met., 13, 1 (2012). https://doi.org/10.15407/ufm.13.01.001
25. F. D. Fischer, J. Svoboda, Journal of Nanoparticle Research}, 10, 255 (2008). https://doi.org/10.1007/s11051-007-9242-6
26. A. M. Gusak , T. V. Zaporozhets, K. N. Tu and U. Gosele, Philos. Mag., 85, 4445 (2005). https://doi.org/10.1080/14786430500311741
27. G. Arfken, Mathematical methods for physicists, Acad. Press, New York and London, (1970)
.