Funct. Mater. 2019; 26 (1): 152-163.
Single-molecule electronic materials. Conductance of π-conjugated oligomers within quasi-correlated tight-binding model
SSI &qout;Institute of Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
For computing electric conductance through organic nanowire of conjugated type we make use of the recently proposed quasi-correlated tight-binding (QCTB) method. The appropriate Green's function (GF) matrices are constructed, and simple numerical algorithms are given for them. Moreover, the GF analytical solutions are obtained for finite-sized polyene chains and other systems. A special attention is paid to conjugated oligomers with various strength of electron correlation. In particular, we find that in polyquinoids the conventional Huckel and restricted Hartree-Fock methods lead, in contrast to QCTB, to a nonphysical increase of GF matrix elements for far separate contacts.
1. J.C.Cuevas, E.Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore (2010). https://doi.org/10.1142/7434
2. R.M.Metzger, Chem. Rev., 115, 5056 (2015). https://doi.org/10.1021/cr500459d
3. Handbook of Single-molecule Electronics, ed. by K.Moth-Poulsen, Pan Stanford Publishing Pte. Ltd, Singapore (2016).
4. D.Xiang, X.Wang, C.Jia et al., Chem. Rev., 116, 4318 (2016). https://doi.org/10.1021/acs.chemrev.5b00680
5. H.Haug, A-P.Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Berlin (1996).
6. E.N.Economou, Green's Functions in Quantum Physics, Springer-Verlag, New York (1979). https://doi.org/10.1007/978-3-662-11900-6
7. Y.Tsuji, E.Estrada, R.Movassagh, R.Hoffmann, Chem. Rev., 118, 4887 (2018). https://doi.org/10.1021/acs.chemrev.7b00733
8. G.C.Solomon, J.P.Bergfield, C.A.Stafford, M.A.Ratner, Beilstein J. Nanotech., 2, 862 (2011). https://doi.org/10.3762/bjnano.2.95
9. K.G.L.Pedersen, M.Strange, M.Leijnse et al,, Phys. Rev. B, 90, 125413 (2014). https://doi.org/10.1103/PhysRevB.90.125413
10. A.V.Luzanov, Functional Materials, 21, 437 (2014). https://doi.org/10.15407/fm21.04.437
11. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151-206. https://doi.org/10.1007/978-1-4899-7699-4_6
12. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017). https://doi.org/10.1063/1.4975196
13. F.A.Bulat, S.-H.Ke, W.Yang, L.Couchman, Phys. Rev. B, 77, 153401 (2008). https://doi.org/10.1103/PhysRevB.77.153401
14. S.H.Ke, M.Yang, S.Curtarolo, H.U.Baranger, Nano Lett., 9, 1011 (2009). https://doi.org/10.1021/nl8031229
15. C.J.O.Verzijl, J.S.Seldenthuis, J.M.Thijssen, J. Chem. Phys., 138, 094102 (2013). https://doi.org/10.1063/1.4793259
16. N.Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, Florida (1992).
17. R.Bass, J. Math. Phys., 26, 3068 (1985). https://doi.org/10.1063/1.526684
18. G.Y.Hu, R.F.O'Connell, J.Phys.A: Math. Gen., 29, 1511 (1996). https://doi.org/10.1088/0305-4470/29/7/020
19. C.M.da Fonseca, J.Petronilho, Lin. Alg. and its Appl., 325, 7 (2001). https://doi.org/10.1016/S0024-3795(00)00289-5
20. N.Nemec, D.Tomanek, G.Cuniberti, Phys. Rev. B, 77, 125420 (2008). https://doi.org/10.1103/PhysRevB.77.125420
21. Y.Tsuji, R.Hoffmann, R.Movassagh, S.Datta, J. Chem. Phys., 141, 224311 (2014). https://doi.org/10.1063/1.4903043
22. B.T.Pickup, P.W.Fowler, M.Borg, I.Sciriha, J. Chem. Phys., 143, 194105 (2015). https://doi.org/10.1063/1.4935716
23. X.Zhao, V,Geskin, R.Stadler, J. Chem. Phys., 146, 092308 (2017). https://doi.org/10.1063/1.4972572
24. E.G.Emberly, G.Kirczenow, J. Phys.: Condens. Matter,, 11, 6911 (1999). https://doi.org/10.1088/0953-8984/11/36/308
25. W.Barrett, Linear Algebra Appl., 27, 211 (1979). https://doi.org/10.1016/0024-3795(79)90043-0
26. Y.Tsuji, T.Stuyver, S.Gunasekaran, L.Venkataraman, J. Phys. Chem. C, 121, 14451 (2017). https://doi.org/10.1021/acs.jpcc.7b03493
27. A.T.Amos, M.Woodward, J. Chem. Phys., 50, 119 (1969). https://doi.org/10.1063/1.1670767
28. A.V.Luzanov, Y.F.Pedash, V.V.Ivanov, J. Struct. Chem., 30, 701 (1989). https://doi.org/10.1007/BF00763786
29. A.V.Luzanov, E.N.Babich, V.V.Ivanov, J. Mol. Struct. (Theochem), 311, 211 (1994). https://doi.org/10.1016/S0166-1280(09)80059-6
30. A.V.Luzanov, V.V.Ivanov, I.V.Boichenko, J. Mol. Struct. (Theochem), 360, 167 (1996). https://doi.org/10.1016/0166-1280(95)04384-5
31. D.M.Cardamone, C.A.Stafford, S.Mazumdar, Nano Lett., 6, 2422 (2006). https://doi.org/10.1021/nl0608442
32. M.M.Mestechkin, Zh. Fiz. Khim., 35, 431 (1961) https://doi.org/10.1086/641137 M.V.Basilevski, Molecular Orbitals Method and Reactivity of Organic Molecules, Khimia, Moscow (1969).
33. J.P.Malrieu, R.Caballol, C.J.Calzado et al., Chem. Rev., 114, 429 (2014). https://doi.org/10.1021/cr300500z
34. E.H.Lieb, Phys. Rev. Lett., 62, 1201 (1989). https://doi.org/10.1103/PhysRevLett.62.1201
35. A.A.Ovchinnikov, Theor. Chem. Acta, 47, 297 (1978). https://doi.org/10.1007/BF00549259
36. A.E.Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York (1972).
37. MATHEMATICA version 5.2, Wolfram Research, Inc. Champaign. Champaign, Illinois (2005).
38. A.V.Luzanov, J. Struct. Chem., 25, 837 (1985). https://doi.org/10.1007/BF00747821
39. P.W.Fowler, B.T.Pickup, T.Z.Todorova, W.Myrvold, J. Chem. Phys., 131, 244110 (2009). https://doi.org/10.1063/1.3272669
40. T.Morikawa, S.Narita, D.J.Klein, Chem. Phys. Lett., 402, 554 (2005). https://doi.org/10.1016/j.cplett.2004.12.102
41. T.Tada, K.Yoshizawa, Chem.Phys.Chem, 3, 1035 (2002). https://doi.org/10.1002/cphc.200290006
42. R.Sykora, T.Novotny, J. Chem. Phys., 146, 174114 (2017). https://doi.org/10.1063/1.4981916
43. J.L.Lennard-Jones, Proc. R. Soc. A, 158, 280 (1937).
44. J.C.Mason, D.C.Handscomb, Chebyshev Polynomials, Chapman&Hall, London (2003). https://doi.org/10.1201/9781420036114
45. E.Estrada, Proc. R. Soc. A, 474, 20170721 (2018). https://doi.org/10.1098/rspa.2017.0721
.