Вы здесь

Funct. Mater. 2019; 26 (1): 152-163.

doi:https://doi.org/10.15407/fm26.01.152

Single-molecule electronic materials. Conductance of π-conjugated oligomers within quasi-correlated tight-binding model

A.V.Luzanov

SSI &qout;Institute of Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

For computing electric conductance through organic nanowire of conjugated type we make use of the recently proposed quasi-correlated tight-binding (QCTB) method. The appropriate Green's function (GF) matrices are constructed, and simple numerical algorithms are given for them. Moreover, the GF analytical solutions are obtained for finite-sized polyene chains and other systems. A special attention is paid to conjugated oligomers with various strength of electron correlation. In particular, we find that in polyquinoids the conventional Huckel and restricted Hartree-Fock methods lead, in contrast to QCTB, to a nonphysical increase of GF matrix elements for far separate contacts.

Keywords: 
single-molecule conductance, Green's function, quantum interference, π-electron correlation, conjugated oligomers.
References: 

1. J.C.Cuevas, E.Scheer, Molecular Electronics: An Introduction to Theory and Experiment, World Scientific, Singapore (2010).

2. R.M.Metzger, Chem. Rev., 115, 5056 (2015).

3. Handbook of Single-molecule Electronics, ed. by K.Moth-Poulsen, Pan Stanford Publishing Pte. Ltd, Singapore (2016).

4. D.Xiang, X.Wang, C.Jia et al., Chem. Rev., 116, 4318 (2016).

5. H.Haug, A-P.Jauho, Quantum Kinetics in Transport and Optics of Semiconductors, Springer, Berlin (1996).

6. E.N.Economou, Green's Functions in Quantum Physics, Springer-Verlag, New York (1979).

7. Y.Tsuji, E.Estrada, R.Movassagh, R.Hoffmann, Chem. Rev., 118, 4887 (2018).

8. G.C.Solomon, J.P.Bergfield, C.A.Stafford, M.A.Ratner, Beilstein J. Nanotech., 2, 862 (2011).

9. K.G.L.Pedersen, M.Strange, M.Leijnse et al,, Phys. Rev. B, 90, 125413 (2014).

10. A.V.Luzanov, Functional Materials, 21, 437 (2014).

11. A.V.Luzanov, in: Practical Aspects of Computational Chemistry IV, ed. by J.Leszczynski, M.K.Shukla, Springer, New York (2016), p.151-206.

12. A.V.Luzanov, F.Plasser, A.Das, H.Lischka, J. Chem. Phys., 146, 064106 (2017).

13. F.A.Bulat, S.-H.Ke, W.Yang, L.Couchman, Phys. Rev. B, 77, 153401 (2008).

14. S.H.Ke, M.Yang, S.Curtarolo, H.U.Baranger, Nano Lett., 9, 1011 (2009).

15. C.J.O.Verzijl, J.S.Seldenthuis, J.M.Thijssen, J. Chem. Phys., 138, 094102 (2013).

16. N.Trinajstic, Chemical Graph Theory, CRC Press, Boca Raton, Florida (1992).

17. R.Bass, J. Math. Phys., 26, 3068 (1985).

18. G.Y.Hu, R.F.O'Connell, J.Phys.A: Math. Gen., 29, 1511 (1996).

19. C.M.da Fonseca, J.Petronilho, Lin. Alg. and its Appl., 325, 7 (2001).

20. N.Nemec, D.Tomanek, G.Cuniberti, Phys. Rev. B, 77, 125420 (2008).

21. Y.Tsuji, R.Hoffmann, R.Movassagh, S.Datta, J. Chem. Phys., 141, 224311 (2014).

22. B.T.Pickup, P.W.Fowler, M.Borg, I.Sciriha, J. Chem. Phys., 143, 194105 (2015).

23. X.Zhao, V,Geskin, R.Stadler, J. Chem. Phys., 146, 092308 (2017).

24. E.G.Emberly, G.Kirczenow, J. Phys.: Condens. Matter,, 11, 6911 (1999).

25. W.Barrett, Linear Algebra Appl., 27, 211 (1979).

26. Y.Tsuji, T.Stuyver, S.Gunasekaran, L.Venkataraman, J. Phys. Chem. C, 121, 14451 (2017).

27. A.T.Amos, M.Woodward, J. Chem. Phys., 50, 119 (1969).

28. A.V.Luzanov, Y.F.Pedash, V.V.Ivanov, J. Struct. Chem., 30, 701 (1989).

29. A.V.Luzanov, E.N.Babich, V.V.Ivanov, J. Mol. Struct. (Theochem), 311, 211 (1994).

30. A.V.Luzanov, V.V.Ivanov, I.V.Boichenko, J. Mol. Struct. (Theochem), 360, 167 (1996).

31. D.M.Cardamone, C.A.Stafford, S.Mazumdar, Nano Lett., 6, 2422 (2006).

32. M.M.Mestechkin, Zh. Fiz. Khim., 35, 431 (1961); M.V.Basilevski, Molecular Orbitals Method and Reactivity of Organic Molecules, Khimia, Moscow (1969).

33. J.P.Malrieu, R.Caballol, C.J.Calzado et al., Chem. Rev., 114, 429 (2014).

34. E.H.Lieb, Phys. Rev. Lett., 62, 1201 (1989).

35. A.A.Ovchinnikov, Theor. Chem. Acta, 47, 297 (1978).

36. A.E.Albert, Regression and the Moore-Penrose Pseudoinverse, Academic Press, New York (1972).

37. MATHEMATICA version 5.2, Wolfram Research, Inc. Champaign. Champaign, Illinois (2005).

38. A.V.Luzanov, J. Struct. Chem., 25, 837 (1985).

39. P.W.Fowler, B.T.Pickup, T.Z.Todorova, W.Myrvold, J. Chem. Phys., 131, 244110 (2009).

40. T.Morikawa, S.Narita, D.J.Klein, Chem. Phys. Lett., 402, 554 (2005).

41. T.Tada, K.Yoshizawa, Chem.Phys.Chem, 3, 1035 (2002).

42. R.Sykora, T.Novotny, J. Chem. Phys., 146, 174114 (2017).

43. J.L.Lennard-Jones, Proc. R. Soc. A, 158, 280 (1937).

44. J.C.Mason, D.C.Handscomb, Chebyshev Polynomials, Chapman&Hall, London (2003).

45. E.Estrada, Proc. R. Soc. A, 474, 20170721 (2018).

Current number: