Funct. Mater. 2019; 26 (1): 16-22.

doi:https://doi.org/10.15407/fm26.01.16

The chemical, phase composition and optical properties of ZnxCd1-xS films obtained by close spaced vacuum sublimation

Yu.Yeromenko1, A.Opanasyuk1, A.Voznyi1, I.Shpetnyi1, Yu.Gnatenko2, V.Grebinaha3

1Sumy State University, 2 Rymsky Korsakov Str., 40007 Sumy, Ukraine
2Institute of Physics, National Academy of Sciences of Ukraine, 46 Nauky Ave., 03028 Kyiv, Ukraine
3National Technical University of Ukraine Kyiv Polytechnic Institute, 37 Peremogy Ave., 03056 Kyiv, Ukraine

Abstract: 

The optical properties, chemical and phase composition of ZnxCd1-xS films obtained by close-spaced vacuum sublimation (CSS) were studied using X-ray diffraction, energy dispersive X-ray analysis and optical spectroscopy methods. The solid solution films were deposited at the substrate and evaporator temperatures of Ts = 573 K and Te = 1273 K, respectively. ZnS and CdS powders were mixed with different weight ratios (x = 0; 0.2; 0.4; 0.6; 0.8; 1.0) for further deposition of ZnxCd1-xS films. It was found that the optical properties (band gap, transmission and absorption coefficients) of ZnxCd1-xS films depends on the chemical composition and can be controlled by the weight percentages of the initial powders. It was found that the actual zinc concentrations in the films is higher than expected and the film thickness reduces with increasing of x. This results demonstrate that ZnxCd1-xS solid solutions films obtained by CSS have improved optical parameters, high crystal quality and good stoichiometry.

Keywords: 
Zn<sub>x</sub>Cd<sub>1-x</sub>S films, vacuum sublimation, optical properties.
References: 

1. S.Adachi, Handbook on Physical Properties of Semiconductors V.3. II-VI Compound Semiconductors, Kluwer Academic Publishers, New York, Boston, (2004).

2. C.J.Panchal, A.S.Opanasyuk, V.V.Kosyak et al., J. Nano-Electron. Phys., 3(1), 274 (2011).

3. J.Poortman, V.Arkhipov, Thin Film Solar Cells Fabrication, Characterization and Applications (2006). https://doi.org/10.1002/0470091282

4. A.Voznyi, Y.Yeromenko, V.Kosyak et al., in: Proc. 2017 IEEE 7th Intern. Conf. on Nanomaterials: Applications and Properties, NAP 2017, 03NE18-1 (2017).

5. R.Luo, B.Liu, X.Yang et al., Appl. Surf. Sci., 360, 744 (2016). https://doi.org/10.1016/j.apsusc.2015.11.058

6. M.S.Hossain, N.Amin, M.A.Matin et al., Chalcogenide Lett., 8, 263 (2011).

7. V.Kumar, A.Sharma, D.K.Sharma et al., Optik (Stuttg)., 125, 1209 (2014). https://doi.org/10.1016/j.ijleo.2013.07.158

8. V.S.Raja, U.Chalapathi, S.Uthanna, Opt. -Int. J. Light Electron Opt., 106, 106 (2012).

9. Y.Raviprakash, K.V.Bangera, G.K.Shivakumar, Sol. Energy, 83, 1645 (2009). https://doi.org/10.1016/j.solener.2009.06.004

10. N.Roushdy, A.M.Farag, M.Abdel Rafea et al., Superlat. Microstruct., 62, 97 (2013). https://doi.org/10.1016/j.spmi.2013.07.008

11. A.Lopez-Otero, Thin Solid Films, 49, 3 (1978). https://doi.org/10.1016/0040-6090(78)90309-7

12. D.I.Kurbatov, A.S.Opanasyuk, S.M.Duvanov et al., Solid State Sci., 13, 1068 (2011). https://doi.org/10.1016/j.solidstatesciences.2011.01.017

13. D.Kurbatov, V.Kosyak, A.Opanasyuk et al., Phys. B Condens. Matter, 404, 5002 (2009). https://doi.org/10.1016/j.physb.2009.08.197

14. D.Kurbatov, A.Opanasyuk, H.Khlyap, Phys. Status Solidi Appl. Mater. Sci., 206, 1549 (2009). https://doi.org/10.1002/pssa.200824472

15. E.M.Feldmeier, A.Fuchs, J.Schaffner et al., Thin Solid Films, 519, 7596 (2011). https://doi.org/10.1016/j.tsf.2011.01.088

16. C.Mejia-Garcia, A.Escamilla-Esquivel, G.Contreras-Puente et al., J. Appl. Phys., 86, 3171 (1999). https://doi.org/10.1063/1.371185

17. Y.V.Znamenshchykov, V.V.Kosyak, A.S.Opanasyuk et al., Functional Materials, 23, 1 (2016). https://doi.org/10.15407/fm23.01.032

18. B.E.Warren, X-ray Diffraction, Dover, New York (1990).

19. International Centre for Diffraction Data, USA, Card Number 00-036-1450.

20. International Centre of Diffraction Data, USA, Card Number 000-41-1049.

21. T.S.Moss, M.Balkanski, Handbook on Semiconductors: Optical Properties of Semiconductors, Elsevier, Amsterdam (1994).

22. W.Mahmood, N.A.Shah, Opt. Mater. (Amst)., 36, 1449 (2014). https://doi.org/10.1016/j.optmat.2013.09.003

23. G.K.Padam, G.L.Malhotra, S.U.M.Rao, J. Appl. Phys., 63, 770 (1988). https://doi.org/10.1063/1.340069

24. R.Zia, F.Saleemi, S.Naseem, Int. J. Mater. Res., 101, 316 (2010). https://doi.org/10.3139/146.110265

25. E.F.El-Wahidy, A.A.M.Farag, M.A.Rafea et al., Mater. Sci. Semicond. Process., 24, 169 (2014). https://doi.org/10.1016/j.mssp.2014.02.028

26. M.C.Baykul, N.Orhan, Thin Solid Films, 518, 1925 (2010). https://doi.org/10.1016/j.tsf.2009.07.142

27. V.Kumar, V.Singh, S.K.Sharma et al., Opt. Mater. (Amst)., 11, 29 (1998). https://doi.org/10.1016/S0925-3467(98)00028-7

28. J.Singh, Optoelectronics: An Introduction to Materials and Devices, Tata McGraw Hill New Delhi, (1996).

29. V.V.Kosyak, A.S.Opanasyuk, P.V.Koval et al., J. Nano-Electron. Phys., 3, 48 (2011).

30. G.Kartopu, A.J.Clayton, W.S.M.Brooks et al., Prog. Photovoltaics Res. Appl., 20, 6 (2012). https://doi.org/10.1002/pip.1160

.

Current number: