Funct. Mater. 2019; 26 (1): 164-173.
Hydroxyflavone-containing polymers: theoretical prediction of spectral and nonlinear optical properties
1National Technical University &qout;Kharkiv Polytechnic Institute&qout;, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
2Institute of Chemistry, V.N.Karazin Kharkiv National University, 4 Svoboda Sq., 61022 Kharkiv, Ukraine
In order to evaluate spectral and nonlinear optical (NLO) properties of polymers and polymer composites containing natural hydroxyflavones as chain fragments or dopants, a theoretical analysis of absorption spectra of flavones, as well as calculations of values of their first hyperpolarizabilities and bond length alternation coefficients (BLA), were carried out. It has been shown that embedding hydroxyflavone fragments into polymer chains, glycidylation flavone hydroxyl groups, as well as twisting flavone molecules, result in improvement of optical properties of the flavone-containing polymers, namely in widening their transparency range into short-wavelength spectral region. The presence of basic amino-containing hardeners in polymers and polymer composites leads to a partial ionization of the flavone hydroxyl groups and, consequently, narrowing transparency range. The analysis of theoretical values - first hyperpolarizability values and BLA coefficients showed that natural polyhydroxyflavones are perspective chromophores for development of materials having a high NLO activity.
1. D.O.Mishurov, A.A.Voronkin, A.D.Roshal, O.O.Brovko, Opt. Mater., 57, 179 (2016). https://doi.org/10.1016/j.optmat.2016.03.047
2. D.R.Kanis, M.A.Ratner, T.J.Marks, Chem. Rev., 94, 195 (1994). https://doi.org/10.1021/cr00025a007
3. P.J.Mendes, T.J.L.Silva, A.J.P.Carvalho et al., J. Mol. Struct., (Theochem), 946, 33 (2010). https://doi.org/10.1016/j.theochem.2010.01.029
4. D.Avci, A.Basoglu, Y.Atalay, Struct. Chem., 21, 213 (2010). https://doi.org/10.1007/s11224-009-9566-1
5. M.Medved, S.Budzak, I.Cernusak, J. Mol. Struct., (Theochem), 961, 66 (2010). https://doi.org/10.1016/j.theochem.2010.09.001
6. W.Bartkowiak, K.Strasburger, J. Mol. Struct., (Theochem), 960, 93 (2010). https://doi.org/10.1016/j.theochem.2010.08.028
7. L.A.De Souza, A.M.Da Silva, G.M.A.Junqueira et al., J. Mol. Struct., (Theochem), 959, 92 (2010). https://doi.org/10.1016/j.theochem.2010.08.018
8. A.Karton, M.A.Iron, M.E.van der Boom et al., J. Phys. Chem. A, 109, 5454 (2005). https://doi.org/10.1021/jp0443456
9. P.C.Ray, Chem. Phys. Lett., 394, 354 (2004). https://doi.org/10.1016/j.cplett.2004.07.019
10. A.Hameed, A.Rybarczyk-Pirek, J.Zakrzewski, J. Organomet. Chem., 656, 102 (2002). https://doi.org/10.1016/S0022-328X(02)01571-1
11. D.O.Mishurov, A.D.Roshal, O.O.Brovko, Functional Materials, 24, 68 (2017). https://doi.org/10.15407/fm24.01.068
12. D.O.Mishurov, A.D.Roshal, O.O.Brovko, Polymer Polymer. Compos., 23, 121 (2015). https://doi.org/10.1177/096739111502300302
13. D.O.Mishurov, A.A.Voronkin, A.D.Roshal, S.I.Bogatyrenko, Opt. Mater., 64, 166 (2017). https://doi.org/10.1016/j.optmat.2016.12.004
14. Density Functional Methods in Chemistry, ed. by J.W.Andzelm, Springer, New York (1991).
15. M.M.Francl, W.J.Pietro, W.J.Hehre et al., J. Chem. Phys., 77, 3654 (1982). https://doi.org/10.1063/1.444267
16. P.C.Hariharan, J.A.Pople, Theor. Chim. Acta, 28, 213 (1973). https://doi.org/10.1007/BF00533485
17. M.J.Frisch, G.W.Trucks, H.B.Schlegel et al., Gaussian 09, revision C.02; Gaussian, Inc. Wallingford (2004).
18. J.Tomasi, M.Persico, Chem. Rev., 94, 2027 (1994). https://doi.org/10.1021/cr00031a013
19. V.Barone, M.Cossi, B.Mennucci et al., J. Chem. Phys., 107, 3210 (1997). https://doi.org/10.1063/1.474671
20. A.O.Doroshenko, Spectral Data Lab Software, Kharkiv (1999).
21. V.G.Georgievskii, A.L.Rybachenko, A.L.Kazakov, Physicochemical and Analytical Characteristics of Flavonoids, RGU Edition, Rostov-on-Don (1980).
22. A.D.Roshal, A.V.Grigorovich, A.O.Doroshenko et al., J. Photochem. Photobiol. A, 127, 89 (1999). https://doi.org/10.1016/S1010-6030(99)00105-7
23. A.D.Roshal, V.G.Mitina, V.D.Orlov et al., Funct. Mater., 4, 121 (1997).
24. D.A.Tykhanov, E.V.Sanin, I.I.Serikova et al., Spectrochim. Acta A, 83, 221 (2011). https://doi.org/10.1016/j.saa.2011.08.022
25. J.L.Oudar, D.S.Chemla, J. Chem. Phys., 66, 2664 (1977). https://doi.org/10.1063/1.434213
26. M.Li, Y.Li, H.Zhang et al., J. Mater. Chem. C, 5, 4111 (2017). https://doi.org/10.1039/C7TC00713B
27. S.R.Marder, D.N.Beratan, L.-T.Cheng, Science, 252, 103 (1991). https://doi.org/10.1126/science.252.5002.103
28. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Science, ed by B.Valeur, J.Brochon, Springler-Verlag, Berlin, Heidelberg (2001).
29. B.R.Cho, S.H.Lee, Y.Min et al., J. Photosci., 8, 79 (2001)
.