Funct. Mater. 2019; 26 (1): 164-173.

doi:https://doi.org/10.15407/fm26.01.164

Hydroxyflavone-containing polymers: theoretical prediction of spectral and nonlinear optical properties

D.Mishurov1,2, A.Voronkin1, A.Roshal2

1National Technical University &qout;Kharkiv Polytechnic Institute&qout;, 2 Kyrpychova Str., 61002 Kharkiv, Ukraine
2Institute of Chemistry, V.N.Karazin Kharkiv National University, 4 Svoboda Sq., 61022 Kharkiv, Ukraine

Abstract: 

In order to evaluate spectral and nonlinear optical (NLO) properties of polymers and polymer composites containing natural hydroxyflavones as chain fragments or dopants, a theoretical analysis of absorption spectra of flavones, as well as calculations of values of their first hyperpolarizabilities and bond length alternation coefficients (BLA), were carried out. It has been shown that embedding hydroxyflavone fragments into polymer chains, glycidylation flavone hydroxyl groups, as well as twisting flavone molecules, result in improvement of optical properties of the flavone-containing polymers, namely in widening their transparency range into short-wavelength spectral region. The presence of basic amino-containing hardeners in polymers and polymer composites leads to a partial ionization of the flavone hydroxyl groups and, consequently, narrowing transparency range. The analysis of theoretical values - first hyperpolarizability values and BLA coefficients showed that natural polyhydroxyflavones are perspective chromophores for development of materials having a high NLO activity.

Keywords: 
hydroxyflavones, flavone-based chromophores, absorption spectra, hyperpolarizability, non-linear optics, polymers and polymer composites.
References: 

1. D.O.Mishurov, A.A.Voronkin, A.D.Roshal, O.O.Brovko, Opt. Mater., 57, 179 (2016). https://doi.org/10.1016/j.optmat.2016.03.047

2. D.R.Kanis, M.A.Ratner, T.J.Marks, Chem. Rev., 94, 195 (1994). https://doi.org/10.1021/cr00025a007

3. P.J.Mendes, T.J.L.Silva, A.J.P.Carvalho et al., J. Mol. Struct., (Theochem), 946, 33 (2010). https://doi.org/10.1016/j.theochem.2010.01.029

4. D.Avci, A.Basoglu, Y.Atalay, Struct. Chem., 21, 213 (2010). https://doi.org/10.1007/s11224-009-9566-1

5. M.Medved, S.Budzak, I.Cernusak, J. Mol. Struct., (Theochem), 961, 66 (2010). https://doi.org/10.1016/j.theochem.2010.09.001

6. W.Bartkowiak, K.Strasburger, J. Mol. Struct., (Theochem), 960, 93 (2010). https://doi.org/10.1016/j.theochem.2010.08.028

7. L.A.De Souza, A.M.Da Silva, G.M.A.Junqueira et al., J. Mol. Struct., (Theochem), 959, 92 (2010). https://doi.org/10.1016/j.theochem.2010.08.018

8. A.Karton, M.A.Iron, M.E.van der Boom et al., J. Phys. Chem. A, 109, 5454 (2005). https://doi.org/10.1021/jp0443456

9. P.C.Ray, Chem. Phys. Lett., 394, 354 (2004). https://doi.org/10.1016/j.cplett.2004.07.019

10. A.Hameed, A.Rybarczyk-Pirek, J.Zakrzewski, J. Organomet. Chem., 656, 102 (2002). https://doi.org/10.1016/S0022-328X(02)01571-1

11. D.O.Mishurov, A.D.Roshal, O.O.Brovko, Functional Materials, 24, 68 (2017). https://doi.org/10.15407/fm24.01.068

12. D.O.Mishurov, A.D.Roshal, O.O.Brovko, Polymer Polymer. Compos., 23, 121 (2015). https://doi.org/10.1177/096739111502300302

13. D.O.Mishurov, A.A.Voronkin, A.D.Roshal, S.I.Bogatyrenko, Opt. Mater., 64, 166 (2017). https://doi.org/10.1016/j.optmat.2016.12.004

14. Density Functional Methods in Chemistry, ed. by J.W.Andzelm, Springer, New York (1991).

15. M.M.Francl, W.J.Pietro, W.J.Hehre et al., J. Chem. Phys., 77, 3654 (1982). https://doi.org/10.1063/1.444267

16. P.C.Hariharan, J.A.Pople, Theor. Chim. Acta, 28, 213 (1973). https://doi.org/10.1007/BF00533485

17. M.J.Frisch, G.W.Trucks, H.B.Schlegel et al., Gaussian 09, revision C.02; Gaussian, Inc. Wallingford (2004).

18. J.Tomasi, M.Persico, Chem. Rev., 94, 2027 (1994). https://doi.org/10.1021/cr00031a013

19. V.Barone, M.Cossi, B.Mennucci et al., J. Chem. Phys., 107, 3210 (1997). https://doi.org/10.1063/1.474671

20. A.O.Doroshenko, Spectral Data Lab Software, Kharkiv (1999).

21. V.G.Georgievskii, A.L.Rybachenko, A.L.Kazakov, Physicochemical and Analytical Characteristics of Flavonoids, RGU Edition, Rostov-on-Don (1980).

22. A.D.Roshal, A.V.Grigorovich, A.O.Doroshenko et al., J. Photochem. Photobiol. A, 127, 89 (1999). https://doi.org/10.1016/S1010-6030(99)00105-7

23. A.D.Roshal, V.G.Mitina, V.D.Orlov et al., Funct. Mater., 4, 121 (1997).

24. D.A.Tykhanov, E.V.Sanin, I.I.Serikova et al., Spectrochim. Acta A, 83, 221 (2011). https://doi.org/10.1016/j.saa.2011.08.022

25. J.L.Oudar, D.S.Chemla, J. Chem. Phys., 66, 2664 (1977). https://doi.org/10.1063/1.434213

26. M.Li, Y.Li, H.Zhang et al., J. Mater. Chem. C, 5, 4111 (2017). https://doi.org/10.1039/C7TC00713B

27. S.R.Marder, D.N.Beratan, L.-T.Cheng, Science, 252, 103 (1991). https://doi.org/10.1126/science.252.5002.103

28. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Science, ed by B.Valeur, J.Brochon, Springler-Verlag, Berlin, Heidelberg (2001).

29. B.R.Cho, S.H.Lee, Y.Min et al., J. Photosci., 8, 79 (2001)

.

Current number: