Funct. Mater. 2019; 26 (1): 189-196.


Optimization of bromine-emerging etching compositions K2Cr2O7-HBr-ethylene glycol for forming a polished surface of CdTe, ZnxCd1-xTe and CdxHg1-xTe

M.V.Chayka1, Z.F.Tomashyk2, V.M.Tomashyk2, G.P.Malanych2, A.A.Korchovyi2

1I.Franko Zhytomyr State University, 40 Velyka Berdychivska Str., 10008 Zhytomyr, Ukraine
2V..Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine


The chemical dissolution of the CdTe single crystals and ZnxCd1-xTe, CdxHg1-xTe solid solutions in aqueous solution of K2Cr2O7-HBr-ethylene glycol in reproducible hydrodynamics conditions has been investigated for the first time. The graphic dependences &qout;etchant concentration - etching rate&qout; have been charted and determined the concentration limits of polishing etchant. It was demonstrated that the dissolution process of these materials is limited by the diffusion stages. The influence of the nature of the solid solutions of the ZnxCd1-xTe and CdxHg1-xTe on the rate and character of their chemical etching was established. The etchants composition and condition of realization of chemical-dynamic polishing process of these semiconductors were optimized.

chemical etching, solid solutions, cadmium telluride, etchant, dissolution rate, chemical-dynamic polishing.

1. J.S.Wright, A.L.Washington, M.C.Duff, J. Electr. Mater., 11, 3119 (2013).

2. J.Rodriguez-Fernandez, V.Carcelen, P.Hidalgo, et. al. J. Appl. Phys. 106, 044901 (2009).

3. N.Tomashik, Z.F.Tomashik, Chemical Treatment of the CdTe and ZnxCd1-xTe surfaces CdTe and Related Compounds; Physics, Defects, Hetero- and Nano-Structures, Crystal Growth, Surfaces and Applications. P. II. Editors R.Triboulet and P. Siffert, Netherlands (2010).

4. V.A.Perevoshchikov, Vysokochistye Veshchestva, 2, 5 (1995).

5. R.R.Singh, D.Kaushik, M.Sharma,, Semicond. Sci. Technol, 23, 015016 (2008).

6. L.Qian J.Wanqi, Semicond. Sci. Technol., 21, 72 (2006).

7. O.S.Galkina, N.N.Grebenyuk, M.V.Dobrotvorskaya et al., Functional Materials, 2, 392 (2001).

8. J.A.Klimenko, V.P.Migal, Functional Materials, 2, 395 (2001).

9. Z.F.Tomashik, P.S.Chukhnenko, V.G.Ivanits'ka et al., Inorg. Mater., 2, 114 (2012).

10. Z.F.Tomashik, N.V.Kusiak, V.N.Tomashik, S.G.Danilenco, Proc. SPIE, 4355, 294 (2001).

11. V.N.Tomashik, N.V.Kusiak, Z.F.Tomashik, S.G.Danilenco, Kondens. Sredy Mezhfaz. Granitsy, 1, 14 (2001).

12. N.V.Kusiak, Z.F.Tomashik, V.N.Tomashik, S.G.Danylenko, Ukr. Himich. Zh., 1, 11 (2002).

13. N.V.Kusiak, V.M.Tomashik, Z.F.Tomashik, V.I.Grytsiv, Optoelectr. Semicond. Techn., 41, 112 (2006).

14. V.N.Tomashik, O.O.Panchuk, Z.F.Tomashik, Neorg. Mater., 8, 1023 (1995).

15. V.N.Tomashik, O.O.Panchuk, A.A.Sava, Z.F.Tomashik, Neorg. Mater., 9, 1241 (1995).

16. F.S. Novik, Simpex Simulation of the Experiment in the Metallurgical Systems Investigation, M.: Metallurgiya (1985) [in Russian].

17. B.D. Luft, V.A. Perevoshchikov, L.N. Vozmylova, Physical and Chemical Methods of Semiconductors Surface Treatment, M.: Radio i Svias' (1982) [in Russian].

18. K. Sangwal. Etching of Crystals. Theory, Experiment, and Application. North Holland, Amsterdam (1987).

19. S.M. Repinsky, Physico-Chemical Aspect of Processes at the Semiconductor-Solution Interface, Nauka, Novosibirsk 9 (1972).

20. S.S. Pop, I.S. Sharodi, Physical Electronics, Yevrosvit, Lviv (2001) [in Ukrainian]


Current number: