Funct. Mater. 2019; 26 (1): 27-34.
Influence of the dispersion medium on the properties of CdTe micro- and nanocrystals in a colloidal solution
1V.Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
2Yu.Fedkovych Chernivtsi National University, 25 Lesia Ukrayinka Str., 58000 Chernivtsi, Ukraine
3Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 2a Osypovskogo Str., 04123 Kyiv, Ukraine
Surface and optical properties of CdTe nanoparticles obtained by grinding (40-150 nm, microcrystals) and colloidal synthesis (1-4 nm, nanocrystals) methods are investigated. It is shown that the most intensive adsorption of stabilizer molecules on the CdTe surface occurs when solvents are better wetting the surface of CdTe particles. It is found that the best stabilization of both the micro- and nanocrystals of CdTe is provided by using methyl and ethyl alcohol as the dispersion medium. The basic characteristics of photoluminescence of CdTe nanocrystals stabilized with thioglycolic acid in deionized water, methanol and ethanol of various concentrations are reported.
1. O.Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors, Cham, Springer (2018). https://doi.org/10.1007/978-3-319-68879-4
2. M.A.Boles, M.Engel, D.V.Talapin, Chem. Rev., 116, 11220 (2016). https://doi.org/10.1021/acs.chemrev.6b00196
3. J.M.Pietryga, Y.S.Park, J.Lim et al., Chem. Rev., 116, 10513 (2016). https://doi.org/10.1021/acs.chemrev.6b00169
4. M.Scheele, W.Brutting, F.Schreiber, Phys. Chem. Chem. Phys., 17, 97 (2015). https://doi.org/10.1039/C4CP03094J
5. M.V.Kovalenko, L.Manna, A.Cabot et al., ACS Nano, 9, 1012 (2015). https://doi.org/10.1021/nn506223h
6. W.Liu, A.K.Herrmann, N.C.Bigall et al., Acc. Chem. Res., 48, 154 (2015). https://doi.org/10.1021/ar500237c
7. R.Triboulet, J. Alloys Compd., 371, 67 (2004). https://doi.org/10.1016/j.jallcom.2003.06.006
8. N.G.Semaltianos, S.Logothetidis, W.Perrie et al., Appl. Phys. A, 94, 641 (2009). https://doi.org/10.1007/s00339-008-4854-y
9. V.V.Terekhin, O.V.Dementeva, V.M.Rudoy, Russ. Chem. Rev., 80, 453 (2011). https://doi.org/10.1070/RC2011v080n05ABEH004183
10. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem.. 60, 1258 (2015). https://doi.org/10.1134/S0036023615100083
11. N.Gaponik, D.V.Talapin, A.L.Rogach et al., J. Phys. Chem. B, 106, 7177 (2002). https://doi.org/10.1021/jp025541k
12. L.Jing, S.V.Kershaw, Y.Li et al., Chem. Rev., 116, 10623 (2016). https://doi.org/10.1021/acs.chemrev.6b00041
13. V.Lesnyak, N.Gaponik, A.Eychmu, Chem. Soc. Rev., 42, 2905 (2013). https://doi.org/10.1039/C2CS35285K
14. O.S.Kulakovich, D.V.Korbutyak, S.M.Kalytchuk et al., J. Appl. Spectrosc., 79, 774 (2012). https://doi.org/10.1007/s10812-012-9668-1
15. A.Raevskaya, O.Rosovik, A.Kozytskiy et al., RSC Adv., 6, 100145 (2016). https://doi.org/10.1039/C6RA18313A
16. C.Guhrenz, V.Sayevich, F.Weigert et al., J. Phys. Chem. Lett., 8, 5573 (2017). https://doi.org/10.1021/acs.jpclett.7b02319
17. A.E.Raevskaya, A.L.Stroyuk, S.Y.Kuchmiy et al., J. Phys. Condens. Matter, 19, 386237 (2007). https://doi.org/10.1088/0953-8984/19/38/386237
18. A.Raevskaya, V.Lesnyak, D.Haubold et al., J. Phys. Chem. C, 121, 9032 (2017). https://doi.org/10.1021/acs.jpcc.7b00849
19. R.Osovsky, V.Kloper, J.Kolny-Olesiak et al., J. Phys. Chem. C, 111, 10841 (2007). https://doi.org/10.1021/jp071979e
20. E.G.Khomyakov, Bull. Kazan Technol. Univ., 15, 45 (2012).
21. M.M.V.Smintina, V.Boschernitsan, V.Skobieva, Elektron. Informat. Techn., 4, 74 (2014).
22. O.T.Yu.Ermolaeva, N.Matveevska, Bull. Lviv Univ. Phys. Ser., 41, 158 (2008).
23. S.Trotzky, J.Kolny-Olesiak, S.M.Falke et al., J. Phys. D. Appl. Phys., 41, 102004 (2008). https://doi.org/10.1088/0022-3727/41/10/102004
24. H.Borchert, D.V.Talapin, N.Gaponik et al., J. Phys. Chem. B, 107, 9662 (2003). https://doi.org/10.1021/jp0352884
25. Q.Wen, S.V.Kershaw, S.Kalytchuk et al., ACS Nano, 10, 4301 (2016). https://doi.org/10.1021/acsnano.5b07852
26. R.Schneider, F.Weigert, V.Lesnyak et al., Phys. Chem. Chem. Phys., 18, 19083 (2016). https://doi.org/10.1039/C6CP03123D
27. O.A.Kapush, S.M.Kalytchuk, L.I.Trishchuk et al., Semicond. Phys., Quant. Electron. Optoelectron., 15, 223 (2012). https://doi.org/10.15407/spqeo15.03.223
28. J.Schneider, T.Dudka, Y.Xiong et al., J. Phys. Chem. C, 122, 13391 (2017). https://doi.org/10.1021/acs.jpcc.7b11027
29. S.Kalytchuk, M.Adam, O.Tomanec et al., ACS Photonics, 4, 1459 (2017). https://doi.org/10.1021/acsphotonics.7b00222
30. S.Kalytchuk, S.Gupta, O.Zhovtiuk et al., J. Phys. Chem. C, 118, 16393 (2014). https://doi.org/10.1021/jp410279z
31. S.Kalytchuk, O.Zhovtiuk, A.L.Rogach et al., Appl. Phys. Lett., 103, 103105 (2013). https://doi.org/10.1063/1.4820406
32. G.Rudko, A.Kovalchuk, V.Fediv et al., Nanoscale Res. Lett., 10, 81 (2015). https://doi.org/10.1186/s11671-015-0787-5
33. S.Kalytchuk, O.Zhovtiuk, S.V.Kershaw et al., Small, 12, 466 (2016). https://doi.org/10.1002/smll.201501984
34. J.J.Bilynskii, O.C.Gorodetska, Opt. Informat. Energy Technol., 2, 198 (2005).
35. I.S.Kisil, V.Gorelov, Bull. Natl. Univ. Lviv Polytech., 460, 109 (2002).
36. A.K.Zapolsky, A.A.Baran, Chemistry (Easton)., 208 (1987).
37. G.Sontag, Chemistry (Easton)., 87 (1973).
38. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem., 58, 1166 (2013). https://doi.org/10.1134/S0036023613100124
39. I.I.Marcin, V.V.Mank, N.I.Lebowka et al., Ukr. Chem. J., 67, 98 (2001).
40. D.L.Schulz, M.Pehnt, D.H.Rose et al., Chem. Mater., 9, 889 (1997). https://doi.org/10.1021/cm9601547
41. A.E.E.Raevskaya, O.L.L.Stroyuk, D.I.I.Solonenko et al., J. Nanoparticle Res., 16, 2650 (2014). https://doi.org/10.1007/s11051-014-2650-5
42. O.E.Rayevska, G.Y.Grodzyuk, V.M.Dzhagan et al., J. Phys. Chem. C, 114, 22478 (2010). https://doi.org/10.1021/jp108561u
43. G.Y.Rudko, I.P.Vorona, V.I.Fediv et al., Nanoscale Res. Lett., 12, 130 (2017). https://doi.org/10.1186/s11671-017-1892-4
44. L.S.Saakian, A.P.Efremov, I.A.Sobolev, Nedra, 211 (1988).
45. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik, Z.F.Tomashik, Inorg. Mater., 50, 13 (2014). https://doi.org/10.1134/S0020168514010105
46. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science & Business Media, Baltimore (1983). https://doi.org/10.1007/978-1-4615-7658-7_9
47. O.Stroyuk, A.Raevskaya, N.Gaponik et al., J. Phys. Chem. C, 122, 10267 (2018). https://doi.org/10.1021/acs.jpcc.8b02337
48. V.Sayevich, C.Guhrenz, M.Sin et al., Adv. Functional Materials, 26, 2163 (2016). https://doi.org/10.1002/adfm.201504767
49. M.Jones, S.S.Lo, G.D.Scholes, Proc. Natl. Acad. Sci. U.S.A., 106, 3011 (2009). https://doi.org/10.1073/pnas.0809316106
50. V.M.Dzhagan, O.L.Stroyuk, O.E.Rayevska et al., J. Colloid Interface Sci., 345, 515 (2010). https://doi.org/10.1016/j.jcis.2010.02.001
51. L.Zhang, Q.Xu, M.Liu et al., Nanoscale Res. Lett., 12, 222 (2017). https://doi.org/10.1186/s11671-017-1971-6
52. W.R.Algar, H.Kim, I.L.Medintz, N.Hildebrandt, Coord. Chem. Rev., 263-264, 65 (2014) https://doi.org/10.1016/j.ccr.2013.07.015
.