Вы здесь

Funct. Mater. 2019; 26 (1): 27-34.

doi:https://doi.org/10.15407/fm26.01.27

Influence of the dispersion medium on the properties of CdTe micro- and nanocrystals in a colloidal solution

O.Kapush1, S.I.Budzulyak1, D.V.Korbutyak1, N.D.Vakhnyak1, S.D.Boruk2, V.M.Dzhagan1, A.I.Yemets3, M.Ya.Valakh1

1V.Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
2Yu.Fedkovych Chernivtsi National University, 25 Lesia Ukrayinka Str., 58000 Chernivtsi, Ukraine
3Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 2a Osypovskogo Str., 04123 Kyiv, Ukraine

Abstract: 

Surface and optical properties of CdTe nanoparticles obtained by grinding (40-150 nm, microcrystals) and colloidal synthesis (1-4 nm, nanocrystals) methods are investigated. It is shown that the most intensive adsorption of stabilizer molecules on the CdTe surface occurs when solvents are better wetting the surface of CdTe particles. It is found that the best stabilization of both the micro- and nanocrystals of CdTe is provided by using methyl and ethyl alcohol as the dispersion medium. The basic characteristics of photoluminescence of CdTe nanocrystals stabilized with thioglycolic acid in deionized water, methanol and ethanol of various concentrations are reported.

Keywords: 
cadmium telluride, nanocrystals, microcrystals, dispersion medium, photoluminescence.
References: 

1. O.Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors, Cham, Springer (2018).

2. M.A.Boles, M.Engel, D.V.Talapin, Chem. Rev., 116, 11220 (2016).

3. J.M.Pietryga, Y.S.Park, J.Lim et al., Chem. Rev., 116, 10513 (2016).

4. M.Scheele, W.Brutting, F.Schreiber, Phys. Chem. Chem. Phys., 17, 97 (2015).

5. M.V.Kovalenko, L.Manna, A.Cabot et al., ACS Nano, 9, 1012 (2015).

6. W.Liu, A.K.Herrmann, N.C.Bigall et al., Acc. Chem. Res., 48, 154 (2015).

7. R.Triboulet, J. Alloys Compd., 371, 67 (2004).

8. N.G.Semaltianos, S.Logothetidis, W.Perrie et al., Appl. Phys. A, 94, 641 (2009).

9. V.V.Terekhin, O.V.Dementeva, V.M.Rudoy, Russ. Chem. Rev., 80, 453 (2011).

10. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem.. 60, 1258 (2015).

11. N.Gaponik, D.V.Talapin, A.L.Rogach et al., J. Phys. Chem. B, 106, 7177 (2002).

12. L.Jing, S.V.Kershaw, Y.Li et al., Chem. Rev., 116, 10623 (2016).

13. V.Lesnyak, N.Gaponik, A.Eychmu, Chem. Soc. Rev., 42, 2905 (2013).

14. O.S.Kulakovich, D.V.Korbutyak, S.M.Kalytchuk et al., J. Appl. Spectrosc., 79, 774 (2012).

15. A.Raevskaya, O.Rosovik, A.Kozytskiy et al., RSC Adv., 6, 100145 (2016).

16. C.Guhrenz, V.Sayevich, F.Weigert et al., J. Phys. Chem. Lett., 8, 5573 (2017).

17. A.E.Raevskaya, A.L.Stroyuk, S.Y.Kuchmiy et al., J. Phys. Condens. Matter, 19, 386237 (2007).

18. A.Raevskaya, V.Lesnyak, D.Haubold et al., J. Phys. Chem. C, 121, 9032 (2017).

19. R.Osovsky, V.Kloper, J.Kolny-Olesiak et al., J. Phys. Chem. C, 111, 10841 (2007).

20. E.G.Khomyakov, Bull. Kazan Technol. Univ., 15, 45 (2012).

21. M.M.V.Smintina, V.Boschernitsan, V.Skobieva, Elektron. Informat. Techn., 4, 74 (2014).

22. O.T.Yu.Ermolaeva, N.Matveevska, Bull. Lviv Univ. Phys. Ser., 41, 158 (2008).

23. S.Trotzky, J.Kolny-Olesiak, S.M.Falke et al., J. Phys. D. Appl. Phys., 41, 102004 (2008).

24. H.Borchert, D.V.Talapin, N.Gaponik et al., J. Phys. Chem. B, 107, 9662 (2003).

25. Q.Wen, S.V.Kershaw, S.Kalytchuk et al., ACS Nano, 10, 4301 (2016).

26. R.Schneider, F.Weigert, V.Lesnyak et al., Phys. Chem. Chem. Phys., 18, 19083 (2016).

27. O.A.Kapush, S.M.Kalytchuk, L.I.Trishchuk et al., Semicond. Phys., Quant. Electron. Optoelectron., 15, 223 (2012).

28. J.Schneider, T.Dudka, Y.Xiong et al., J. Phys. Chem. C, 122, 13391 (2017).

29. S.Kalytchuk, M.Adam, O.Tomanec et al., ACS Photonics, 4, 1459 (2017).

30. S.Kalytchuk, S.Gupta, O.Zhovtiuk et al., J. Phys. Chem. C, 118, 16393 (2014).

31. S.Kalytchuk, O.Zhovtiuk, A.L.Rogach et al., Appl. Phys. Lett., 103, 103105 (2013).

32. G.Rudko, A.Kovalchuk, V.Fediv et al., Nanoscale Res. Lett., 10, 81 (2015).

33. S.Kalytchuk, O.Zhovtiuk, S.V.Kershaw et al., Small, 12, 466 (2016).

34. J.J.Bilynskii, O.C.Gorodetska, Opt. Informat. Energy Technol., 2, 198 (2005).

35. I.S.Kisil, V.Gorelov, Bull. Natl. Univ. Lviv Polytech., 460, 109 (2002).

36. A.K.Zapolsky, A.A.Baran, Chemistry (Easton)., 208 (1987).

37. G.Sontag, Chemistry (Easton)., 87 (1973).

38. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem., 58, 1166 (2013).

39. I.I.Marcin, V.V.Mank, N.I.Lebowka et al., Ukr. Chem. J., 67, 98 (2001).

40. D.L.Schulz, M.Pehnt, D.H.Rose et al., Chem. Mater., 9, 889 (1997).

41. A.E.E.Raevskaya, O.L.L.Stroyuk, D.I.I.Solonenko et al., J. Nanoparticle Res., 16, 2650 (2014).

42. O.E.Rayevska, G.Y.Grodzyuk, V.M.Dzhagan et al., J. Phys. Chem. C, 114, 22478 (2010).

43. G.Y.Rudko, I.P.Vorona, V.I.Fediv et al., Nanoscale Res. Lett., 12, 130 (2017).

44. L.S.Saakian, A.P.Efremov, I.A.Sobolev, Nedra, 211 (1988).

45. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik, Z.F.Tomashik, Inorg. Mater., 50, 13 (2014).

46. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science & Business Media, Baltimore (1983).

47. O.Stroyuk, A.Raevskaya, N.Gaponik et al., J. Phys. Chem. C, 122, 10267 (2018).

48. V.Sayevich, C.Guhrenz, M.Sin et al., Adv. Functional Materials, 26, 2163 (2016).

49. M.Jones, S.S.Lo, G.D.Scholes, Proc. Natl. Acad. Sci. U.S.A., 106, 3011 (2009).

50. V.M.Dzhagan, O.L.Stroyuk, O.E.Rayevska et al., J. Colloid Interface Sci., 345, 515 (2010).

51. L.Zhang, Q.Xu, M.Liu et al., Nanoscale Res. Lett., 12, 222 (2017).

52. W.R.Algar, H.Kim, I.L.Medintz, N.Hildebrandt, Coord. Chem. Rev., 263-264, 65 (2014).

Current number: