Вы здесь

Funct. Mater. 2019; 26 (1): 27-34.

doi:https://doi.org/10.15407/fm26.01.27

Influence of the dispersion medium on the properties of CdTe micro- and nanocrystals in a colloidal solution

O.Kapush1, S.I.Budzulyak1, D.V.Korbutyak1, N.D.Vakhnyak1, S.D.Boruk2, V.M.Dzhagan1, A.I.Yemets3, M.Ya.Valakh1

1V.Lashkaryov Institute of Semiconductors Physics, National Academy of Sciences of Ukraine, 41 Nauky Ave., 03028 Kyiv, Ukraine
2Yu.Fedkovych Chernivtsi National University, 25 Lesia Ukrayinka Str., 58000 Chernivtsi, Ukraine
3Institute of Food Biotechnology and Genomics, National Academy of Sciences of Ukraine, 2a Osypovskogo Str., 04123 Kyiv, Ukraine

Abstract: 

Surface and optical properties of CdTe nanoparticles obtained by grinding (40-150 nm, microcrystals) and colloidal synthesis (1-4 nm, nanocrystals) methods are investigated. It is shown that the most intensive adsorption of stabilizer molecules on the CdTe surface occurs when solvents are better wetting the surface of CdTe particles. It is found that the best stabilization of both the micro- and nanocrystals of CdTe is provided by using methyl and ethyl alcohol as the dispersion medium. The basic characteristics of photoluminescence of CdTe nanocrystals stabilized with thioglycolic acid in deionized water, methanol and ethanol of various concentrations are reported.

Keywords: 
cadmium telluride, nanocrystals, microcrystals, dispersion medium, photoluminescence.
References: 

1. O.Stroyuk, Solar Light Harvesting with Nanocrystalline Semiconductors, Cham, Springer (2018). https://doi.org/10.1007/978-3-319-68879-4

2. M.A.Boles, M.Engel, D.V.Talapin, Chem. Rev., 116, 11220 (2016). https://doi.org/10.1021/acs.chemrev.6b00196

3. J.M.Pietryga, Y.S.Park, J.Lim et al., Chem. Rev., 116, 10513 (2016). https://doi.org/10.1021/acs.chemrev.6b00169

4. M.Scheele, W.Brutting, F.Schreiber, Phys. Chem. Chem. Phys., 17, 97 (2015). https://doi.org/10.1039/C4CP03094J

5. M.V.Kovalenko, L.Manna, A.Cabot et al., ACS Nano, 9, 1012 (2015). https://doi.org/10.1021/nn506223h

6. W.Liu, A.K.Herrmann, N.C.Bigall et al., Acc. Chem. Res., 48, 154 (2015). https://doi.org/10.1021/ar500237c

7. R.Triboulet, J. Alloys Compd., 371, 67 (2004). https://doi.org/10.1016/j.jallcom.2003.06.006

8. N.G.Semaltianos, S.Logothetidis, W.Perrie et al., Appl. Phys. A, 94, 641 (2009). https://doi.org/10.1007/s00339-008-4854-y

9. V.V.Terekhin, O.V.Dementeva, V.M.Rudoy, Russ. Chem. Rev., 80, 453 (2011). https://doi.org/10.1070/RC2011v080n05ABEH004183

10. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem.. 60, 1258 (2015). https://doi.org/10.1134/S0036023615100083

11. N.Gaponik, D.V.Talapin, A.L.Rogach et al., J. Phys. Chem. B, 106, 7177 (2002). https://doi.org/10.1021/jp025541k

12. L.Jing, S.V.Kershaw, Y.Li et al., Chem. Rev., 116, 10623 (2016). https://doi.org/10.1021/acs.chemrev.6b00041

13. V.Lesnyak, N.Gaponik, A.Eychmu, Chem. Soc. Rev., 42, 2905 (2013). https://doi.org/10.1039/C2CS35285K

14. O.S.Kulakovich, D.V.Korbutyak, S.M.Kalytchuk et al., J. Appl. Spectrosc., 79, 774 (2012). https://doi.org/10.1007/s10812-012-9668-1

15. A.Raevskaya, O.Rosovik, A.Kozytskiy et al., RSC Adv., 6, 100145 (2016). https://doi.org/10.1039/C6RA18313A

16. C.Guhrenz, V.Sayevich, F.Weigert et al., J. Phys. Chem. Lett., 8, 5573 (2017). https://doi.org/10.1021/acs.jpclett.7b02319

17. A.E.Raevskaya, A.L.Stroyuk, S.Y.Kuchmiy et al., J. Phys. Condens. Matter, 19, 386237 (2007). https://doi.org/10.1088/0953-8984/19/38/386237

18. A.Raevskaya, V.Lesnyak, D.Haubold et al., J. Phys. Chem. C, 121, 9032 (2017). https://doi.org/10.1021/acs.jpcc.7b00849

19. R.Osovsky, V.Kloper, J.Kolny-Olesiak et al., J. Phys. Chem. C, 111, 10841 (2007). https://doi.org/10.1021/jp071979e

20. E.G.Khomyakov, Bull. Kazan Technol. Univ., 15, 45 (2012).

21. M.M.V.Smintina, V.Boschernitsan, V.Skobieva, Elektron. Informat. Techn., 4, 74 (2014).

22. O.T.Yu.Ermolaeva, N.Matveevska, Bull. Lviv Univ. Phys. Ser., 41, 158 (2008).

23. S.Trotzky, J.Kolny-Olesiak, S.M.Falke et al., J. Phys. D. Appl. Phys., 41, 102004 (2008). https://doi.org/10.1088/0022-3727/41/10/102004

24. H.Borchert, D.V.Talapin, N.Gaponik et al., J. Phys. Chem. B, 107, 9662 (2003). https://doi.org/10.1021/jp0352884

25. Q.Wen, S.V.Kershaw, S.Kalytchuk et al., ACS Nano, 10, 4301 (2016). https://doi.org/10.1021/acsnano.5b07852

26. R.Schneider, F.Weigert, V.Lesnyak et al., Phys. Chem. Chem. Phys., 18, 19083 (2016). https://doi.org/10.1039/C6CP03123D

27. O.A.Kapush, S.M.Kalytchuk, L.I.Trishchuk et al., Semicond. Phys., Quant. Electron. Optoelectron., 15, 223 (2012). https://doi.org/10.15407/spqeo15.03.223

28. J.Schneider, T.Dudka, Y.Xiong et al., J. Phys. Chem. C, 122, 13391 (2017). https://doi.org/10.1021/acs.jpcc.7b11027

29. S.Kalytchuk, M.Adam, O.Tomanec et al., ACS Photonics, 4, 1459 (2017). https://doi.org/10.1021/acsphotonics.7b00222

30. S.Kalytchuk, S.Gupta, O.Zhovtiuk et al., J. Phys. Chem. C, 118, 16393 (2014). https://doi.org/10.1021/jp410279z

31. S.Kalytchuk, O.Zhovtiuk, A.L.Rogach et al., Appl. Phys. Lett., 103, 103105 (2013). https://doi.org/10.1063/1.4820406

32. G.Rudko, A.Kovalchuk, V.Fediv et al., Nanoscale Res. Lett., 10, 81 (2015). https://doi.org/10.1186/s11671-015-0787-5

33. S.Kalytchuk, O.Zhovtiuk, S.V.Kershaw et al., Small, 12, 466 (2016). https://doi.org/10.1002/smll.201501984

34. J.J.Bilynskii, O.C.Gorodetska, Opt. Informat. Energy Technol., 2, 198 (2005).

35. I.S.Kisil, V.Gorelov, Bull. Natl. Univ. Lviv Polytech., 460, 109 (2002).

36. A.K.Zapolsky, A.A.Baran, Chemistry (Easton)., 208 (1987).

37. G.Sontag, Chemistry (Easton)., 87 (1973).

38. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik et al., Russ. J. Inorg. Chem., 58, 1166 (2013). https://doi.org/10.1134/S0036023613100124

39. I.I.Marcin, V.V.Mank, N.I.Lebowka et al., Ukr. Chem. J., 67, 98 (2001).

40. D.L.Schulz, M.Pehnt, D.H.Rose et al., Chem. Mater., 9, 889 (1997). https://doi.org/10.1021/cm9601547

41. A.E.E.Raevskaya, O.L.L.Stroyuk, D.I.I.Solonenko et al., J. Nanoparticle Res., 16, 2650 (2014). https://doi.org/10.1007/s11051-014-2650-5

42. O.E.Rayevska, G.Y.Grodzyuk, V.M.Dzhagan et al., J. Phys. Chem. C, 114, 22478 (2010). https://doi.org/10.1021/jp108561u

43. G.Y.Rudko, I.P.Vorona, V.I.Fediv et al., Nanoscale Res. Lett., 12, 130 (2017). https://doi.org/10.1186/s11671-017-1892-4

44. L.S.Saakian, A.P.Efremov, I.A.Sobolev, Nedra, 211 (1988).

45. O.A.Kapush, L.I.Trishchuk, V.N.Tomashik, Z.F.Tomashik, Inorg. Mater., 50, 13 (2014). https://doi.org/10.1134/S0020168514010105

46. J.R.Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer Science & Business Media, Baltimore (1983). https://doi.org/10.1007/978-1-4615-7658-7_9

47. O.Stroyuk, A.Raevskaya, N.Gaponik et al., J. Phys. Chem. C, 122, 10267 (2018). https://doi.org/10.1021/acs.jpcc.8b02337

48. V.Sayevich, C.Guhrenz, M.Sin et al., Adv. Functional Materials, 26, 2163 (2016). https://doi.org/10.1002/adfm.201504767

49. M.Jones, S.S.Lo, G.D.Scholes, Proc. Natl. Acad. Sci. U.S.A., 106, 3011 (2009). https://doi.org/10.1073/pnas.0809316106

50. V.M.Dzhagan, O.L.Stroyuk, O.E.Rayevska et al., J. Colloid Interface Sci., 345, 515 (2010). https://doi.org/10.1016/j.jcis.2010.02.001

51. L.Zhang, Q.Xu, M.Liu et al., Nanoscale Res. Lett., 12, 222 (2017). https://doi.org/10.1186/s11671-017-1971-6

52. W.R.Algar, H.Kim, I.L.Medintz, N.Hildebrandt, Coord. Chem. Rev., 263-264, 65 (2014) https://doi.org/10.1016/j.ccr.2013.07.015

.

Current number: