Вы здесь

Funct. Mater. 2019; 26 (1): 35-40.

doi:https://doi.org/10.15407/fm26.01.35

Optical and luminescence properties of Er,Yb:YAG crystals grown by horizontal directional crystallization method

S.V.Nizhankovskyi, A.A.Kozlovskyi, N.O.Kovalenko, O.O.Vovk

Institute for Single Crystals, STC &qout;Institute for Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine

Abstract: 

The spectral properties of Er,Yb co-doped Y3Al5O12 single-crystals grown for the first time by modified horizontal directional crystallization method in reducing atmosphere Ar+(CO, H2) are reported in the paper. Optical absorption and photoluminescence spectra indicated that doping ions are effectively incorporated into the garnet crystal matrix. Photoluminescence spectra were measured under the 920 nm excitation. The strongest IR emission peaks were located at 1531 nm and 1619 nm. The up-conversion red and green emission lines were also recorded.

Keywords: 
Er,Yb:YAG, modified horizontal directional crystallization method, reducing atmosphere, optical absorption, photoluminescence, energy transfer, up-conversion.
References: 

1. A.H.Kevshyn, V.V.Halyan, T.A.Semenyuk, Phys. Chem. Solid State, 16, 245 (2015).

2. J.Hostasa, L.Esposito, A.Malchere, J. Mater. Res., 29, 2288, (2014).

3. V.I.Zhekov, T.M.Murina, A.M.Prokhorov et al., Quant. Electron., 13, 419 (1986).

4. Koechner, M.Bass, Solid-State Lasers, Springer-Verlag, New York (2003).

5. R.C.Stoneman, Solid-State Lasers and Applications, CRC Press Taylor & Francis Group, Boca Raton, London, New York (2007).

6. Mierczyk, M.Kwasny, K.Kopczynski et al., J. Alloys and Comp., 300-301, 398 (2000).

7. E.Snitzer, R.Woodcock, Appl. Phys. Lett., 6, 45 (1965).

8. E.Georgiou, O.Musset, J.P.Boquillon, Appl. Phys. B, 70, 755 (2000).

9. T.Danger, G.Huber, K.Petermann et al., Proc. OSA Advanced Solid State Laser Conference (ASSL) (1998), p.305.

10. P.Laporta, S.Taccheo, S.Longhi et al., Opt. Lett., 18, 1232 (1993).

11. Y.E.Sverchkov, B.I.Denker, G.V.Maximova et al., Proc. SPIE, 1627, Solid-State Lasers III (1992), p.37.

12. L.Dobrzycki, E.Bulska, D.A.Pavlak et al., Inorg. Chem., 43, 7656 (2004).

13. Z.Mierczyk, K.Kopczynski, M.Kwasny et al., Proc. SPIE, 4412, Growth, Characterization, and Applications of Single Crystals (2001), p.406.

14. S.V.Nizhankovskyi, A.V.Tan'ko, N.S.Sidelnikova et al., Cryst. Res. and Tech., 50, 223 (2015).

15. G.W.Burdick, J.B.Gruber, K.L.Nash et al., Spectrosc. Lett., 43, 406 (2010).

16. D.K.Sardar, C.C.Russell III, J.B.Gruber et al., J. Appl. Phys., 97, 123501 (2005).

17. J.B.Gruber, A.S.Nijjar, D.K.Sardar et al., J. Appl. Phys., 97, 063519 (2005).

18. S.V.Nizhankovskyi, A.A.Kozlovskyi, N.O.Kovalenko et al., Functional Materials, 25, 646 (2018).

19. B.Denker, B.Galagan, V.Osiko et al., Opt. Commun., 271, 142 (2007).

20. V.V.Ovsyankin, Spectroscopy of Solids Containing Rare Earth Ions, ed. by A.A.Kaplyanskii, R.M.Macfarlane, Elsevier Science Publishers B.V., The Netherlands (1987), p.343.

21. Xin-Bo Yang, Jun Xu, Hong-Jun Li et al., J. Appl. Phys., 106, 033105 (2009)

22. M.Springis, A.Pujats, J.Valbis, Phys. Condens. Matter., 3, 5457 (1991).

23. N.Shiran, A.Gektin, K.Hubenko, Functional Materials, 23, 191 (2016).

24. C.K.Jorgensen, B.R.Judd, Mol. Phys., 8, 281 (1964).

25. Kh.S.Bagdasarov, V.I.Zhekov, V.A.Lobachev et al., Yttrium-erbium-aluminum Garnet Laser, Nauka, Moscow (1989) [in Russian].

26. F.Auzel, Chem. Rev., 104, 139 (2004).

Current number: