Funct. Mater. 2019; 26 (1): 35-40.
Optical and luminescence properties of Er,Yb:YAG crystals grown by horizontal directional crystallization method
Institute for Single Crystals, STC &qout;Institute for Single Crystals&qout;, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
The spectral properties of Er,Yb co-doped Y3Al5O12 single-crystals grown for the first time by modified horizontal directional crystallization method in reducing atmosphere Ar+(CO, H2) are reported in the paper. Optical absorption and photoluminescence spectra indicated that doping ions are effectively incorporated into the garnet crystal matrix. Photoluminescence spectra were measured under the 920 nm excitation. The strongest IR emission peaks were located at 1531 nm and 1619 nm. The up-conversion red and green emission lines were also recorded.
1. A.H.Kevshyn, V.V.Halyan, T.A.Semenyuk, Phys. Chem. Solid State, 16, 245 (2015). https://doi.org/10.15330/pcss.16.2.245-252
2. J.Hostasa, L.Esposito, A.Malchere, J. Mater. Res., 29, 2288, (2014). https://doi.org/10.1557/jmr.2014.206
3. V.I.Zhekov, T.M.Murina, A.M.Prokhorov et al., Quant. Electron., 13, 419 (1986).
4. Koechner, M.Bass, Solid-State Lasers, Springer-Verlag, New York (2003). https://doi.org/10.1007/b97423
5. R.C.Stoneman, Solid-State Lasers and Applications, CRC Press Taylor & Francis Group, Boca Raton, London, New York (2007).
6. Mierczyk, M.Kwasny, K.Kopczynski et al., J. Alloys and Comp., 300-301, 398 (2000). https://doi.org/10.1016/S0925-8388(99)00746-X
7. E.Snitzer, R.Woodcock, Appl. Phys. Lett., 6, 45 (1965). https://doi.org/10.1063/1.1754157
8. E.Georgiou, O.Musset, J.P.Boquillon, Appl. Phys. B, 70, 755 (2000). https://doi.org/10.1007/PL00021131
9. T.Danger, G.Huber, K.Petermann et al., Proc. OSA Advanced Solid State Laser Conference (ASSL) (1998), p.305.
10. P.Laporta, S.Taccheo, S.Longhi et al., Opt. Lett., 18, 1232 (1993). https://doi.org/10.1364/OL.18.001232
11. Y.E.Sverchkov, B.I.Denker, G.V.Maximova et al., Proc. SPIE, 1627, Solid-State Lasers III (1992), p.37.
12. L.Dobrzycki, E.Bulska, D.A.Pavlak et al., Inorg. Chem., 43, 7656 (2004). https://doi.org/10.1021/ic049920z
13. Z.Mierczyk, K.Kopczynski, M.Kwasny et al., Proc. SPIE, 4412, Growth, Characterization, and Applications of Single Crystals (2001), p.406.
14. S.V.Nizhankovskyi, A.V.Tan'ko, N.S.Sidelnikova et al., Cryst. Res. and Tech., 50, 223 (2015). https://doi.org/10.1002/crat.201400430
15. G.W.Burdick, J.B.Gruber, K.L.Nash et al., Spectrosc. Lett., 43, 406 (2010). https://doi.org/10.1080/00387010.2010.487019
16. D.K.Sardar, C.C.Russell III, J.B.Gruber et al., J. Appl. Phys., 97, 123501 (2005). https://doi.org/10.1063/1.1928327
17. J.B.Gruber, A.S.Nijjar, D.K.Sardar et al., J. Appl. Phys., 97, 063519 (2005). https://doi.org/10.1063/1.1861148
18. S.V.Nizhankovskyi, A.A.Kozlovskyi, N.O.Kovalenko et al., Functional Materials, 25, 646 (2018). https://doi.org/10.15407/fm25.04.646
19. B.Denker, B.Galagan, V.Osiko et al., Opt. Commun., 271, 142 (2007). https://doi.org/10.1016/j.optcom.2006.09.046
20. V.V.Ovsyankin, Spectroscopy of Solids Containing Rare Earth Ions, ed. by A.A.Kaplyanskii, R.M.Macfarlane, Elsevier Science Publishers B.V., The Netherlands (1987), p.343.
21. Xin-Bo Yang, Jun Xu, Hong-Jun Li et al., J. Appl. Phys., 106, 033105 (2009)
22. M.Springis, A.Pujats, J.Valbis, Phys. Condens. Matter., 3, 5457 (1991). https://doi.org/10.1088/0953-8984/3/28/021
23. N.Shiran, A.Gektin, K.Hubenko, Functional Materials, 23, 191 (2016). https://doi.org/10.15407/fm23.02.191
24. C.K.Jorgensen, B.R.Judd, Mol. Phys., 8, 281 (1964). https://doi.org/10.1080/00268976400100321
25. Kh.S.Bagdasarov, V.I.Zhekov, V.A.Lobachev et al., Yttrium-erbium-aluminum Garnet Laser, Nauka, Moscow (1989) [in Russian].
26. F.Auzel, Chem. Rev., 104, 139 (2004). https://doi.org/10.1021/cr020357g
.