Вы здесь

Funct. Mater. 2019; 26 (1): 41-47.

doi:https://doi.org/10.15407/fm26.01.41

The impact of heat treatment on the magnetic sensitivity of irradiated by electrons single crystals n-Ge

S.V.Luniov1, A.I.Zimych1, M.V.Khvyshchun1, V.T.Maslyuk2, I.G.Megela2

1Lutsk National Technical University, 75 Lvivska Str., 43018 Lutsk, Ukraine
2Institute of Electronic Physics, National Academy of Sciences of Ukraine, 21 Universitetska Str., 88017 Uzhghorod, Ukraine

Abstract: 

Isothermal annealing of n-Ge single crystals irradiated by the electron flux Ω = 5·1015 el./cm2, energy of 10 MeV, has been investigated. Dependences of Hall voltage on the magnitude of the external magnetic field in the range from 0 to 0.5 T are obtained by Hall effect measurements. Coefficients of the magnetic sensitivity for irradiated single crystals n-Ge before and after annealing at different temperatures were also determined. The abnormal annealing at the temperature of 403 K has been revealed. Hall constant was being increased during this process, and the maximal magnetic sensitivity was being achieved correspondingly. The given effect is explained by the increasing concentration of radiation defects with deep energy levels (A-centers) owing to the generation of vacancies which are formed in annealing of kernels of regions disordering. Such abnormal annealing can be used as a tool to create highly sensitive Hall sensors by the irradiated n-Ge.

Keywords: 
isothermal annealing, radiation defects, magnetic sensitivity, germanium single crystals.
References: 

1. Ch.Schott, P.-A.Besse, R.S.Popovic, Sensors and Actuators A: Physical, 85, 111 (2000).

2. A.Danilov, Modern Electron., 10, 26 (2004).

3. A.F.Aleinikov, V.A.Gridchin, M.P.Tsapenko, Sensors (Perspective Directions of Development), NSTU Publishing House, Novosibirsk (2001) [in Russian].

4. A.F.Kaperko, Meas. Techn., 1, 3 (1998).

5. Y.H.Kahng, Y.W.Kim, M.S.Kim et al., J. Korean Phys. Soc., 69, 1456 (2016).

6. V.A.Antropov, L.Kh.Antropova, Application of Galvanomagnetic Phenomena in Semiconductors for the Development of Microwave Devices, PGU, Penza (2011) [in Russian].

7. I.Duran, O.Hronova, J.Stockel et al., Rev. Sci. Instrum., 79, 10F123 (2008).

8. J.Yang, J.W.Lee, B.K.Jung et al., Rev. Sci. Instrum., 85, 11D809 (2014).

9. J.A.Tapia, A.L.Herrera-May, P.J.GarcaRamrez et al., Biomed Microdevices, 13, 303 (2011).

10. J.Lenz, S.Edelstein, IEEE Sensors J., 6, 631 (2006).

11. S.Tumanski, Przeglad Elektrotechniczny, 10, 1 (2013).

12. I.Bichurin, V.Petrov, R.V.Petrov et al., Ferroelectrics, 280, 199 (2002)

13. V.S Osadchuk, O.V.Osadchuk, O.P.Bililivska, O.M.Zhaglovskaya, Bull. NTU &qout;KhPI&qout;, 42, 948 (2012).

14. K.Staroverov, Integral Hall Sensors of the &qout;Honeywell&qout;. Electron. News, 1, 9 (2010).

15. S.Sysoeva, Components and Technology, 1, 19 (2012).

16. N.T.Gorbachuk, P.I.Didenko, Surface, 4, 57 (2005).

17. S.V.Luniov, A.I.Zimych, P.F.Nazarchuk et al., Nucl. Phys. Atomic Energy, 17, 47 (2016).

18. S.Luniov, A.Zimych, P.Nazarchukc et al., J. Phys. Studies, 19, 4704 (2015).

19. J.Fage-Pedersen, A.N.Larsen, A.Mesli, Phys. Rev. B., 62, 10116 (2000).

20. A.P.Dolgolenko, Nucl. Phys. Atomic Energy, 14, 377 (2013).

21. E.V.Kuchis, Galvanomagnetic Effects and Methods of their Investigation, Radio and Communication, Moscow (1990) [in Russian].

22. V.I.Smirnov, Non-destructive Methods for Controlling the Parameters of Semiconductor Materials and Structures, UlSTU, Ulyanovsk, (2012) [in Russian].

23. O.I.Podkopaev, T.V.Kulakovskaya, A.F.Shimanskii, N.O.Molotkovskaya, Phys. Solid State, 55, 949 (2013).

24. V.M.Babich, P.I.Baranskii, V.A.Shershel, Phys. Stat. Solidi, 42, K23 (1970).

25. G.P.Gaidar, V.A.Girii, V.I.Shakhovtsov, Phys. Techn. Semicond., 20, 2109 (1986).

26. Ya.M.Olikh, I.A.Lisyuk, N.D.Timochko, Techn. Design Electron. Equip., 3, 9 (2004).

27. E.N.Vologdin, A.P.Lysenko, Integral Radiation Changes of the Parameters of Semiconductor Materials, MGIEM, Moscow (1998) [in Russian].

28. P.S.Kireev, Physics of Semiconductors, Vysshaya Shkola, Moscow (1969) [in Russian].

29. B.R.Gossik, J. Appl. Phys., 30, 1214 (1959).

Current number: