Funct. Mater. 2019; 26 (1): 48-53.

doi:https://doi.org/10.15407/fm26.01.48

The effect of X-ray irradiation on ultrasound attenuation and velocity in LiF single crystals

O.M.Petchenko1, G.O.Petchenko1, S.M.Boiko2, A.S.Litvinenko1

1O.Beketov National University of Urban Economy, 17 Marshal Bazhanov Str., 61002 Kharkiv, Ukraine
2M.Zhukovskiy National Aerospace University, 17 Chkalov Str., 61000 Kharkiv, Ukraine

Abstract: 

Using the pulsed method at a frequency of 7,5 MHz, the dependences of dislocation absorption and ultrasound velocity in LiF single crystals with residual deformation ε = 0,65 % at T = 300 K in the dose range of 0-1057 R were investigated. It has been established that, under conditions of crystals' irradiation with X-rays, the concentration of radiation centers fixing easily mobile dislocations significantly increases. As a result of limiting these dislocations' number, the attenuation of ultrasound decreases sharply, and its propagation velocity in the sample increases.

Keywords: 
irradiation, ultrasound attenuation and velocity, density of highly mobile dislocations, average effective length of a dislocation segment, deformation, radiation pinning centers.
References: 

1. R.Truell, C.Elbaum, B.Chik, Ultrasonic Methods in Solid State Physics, Mir, Moscow (1972) [in Russian].

2. A.A.Botaki, A.A.Vorobjev, V.L.Uljanov, Radiation Physics of Ionic Crystals, Atomizdat, Moscow (1980) [in Russian].

3. A.Granato, K.Lucke, J. Appl. Phys., 27, 583 (1956). https://doi.org/10.1063/1.1722436

4. G.G.Knab, A.A.Urusovskaja, Crystallography, 17, 828 (1972).

5. I.A.Parfianovich, E.E.Penzina, Electronic Color Centers in Ionic Crystals, East-Siberia Book Publishing House, Irkutsk (1977).

6. G.A.Petchenko, S.S.Ovchinnikov, Probl. Atom. Sci. Techn., 90, 29 (2014).

7. G.A.Petchenko, A.M.Petchenko, Probl. Atom. Scie. Techn., 96, 25 (2015).

8. R.Truell, J. Appl. Phys., 30, 1275 (1959). https://doi.org/10.1063/1.1735305

9. L.P.Blinov, A.E.Kolesnikov, L.B.Langans, Acoustic Experiments, Standarts Publishing House, Moscow (1971) [in Russian].

10. V.Naundorf, K.Lucke, Mechanisms of Internal Friction in Solids, Nauka, Moscow (1976).

11. R.B.Gordon, Internal Friction and Defects in Metals, Metallurgy, Moscow (1965).

12. R.Truell, J. Appl. Phys., 32, 1601 (1961). https://doi.org/10.1063/1.1728403

13. F.Fanti, J.Holder, A.V.Granato, J. Acoust. Soc. Amer., 45, 1356 (1969). https://doi.org/10.1121/1.1911612

14. A.Hikata, J.Deputat, C.Elbaum, Phys. Rev., 6, 4008 (1972). https://doi.org/10.1103/PhysRevB.6.4008

15. A.Hicata, B.Chick, C.Elbaum, R.Truell, Appl. Phys. Let., 2, 5 (1963). https://doi.org/10.1063/1.1753722

16. A.V.Granato, J.de Clerk, R.Truell, Phys. Rev., 108, 895 (1957). https://doi.org/10.1103/PhysRev.108.895

17. Yu.F.Boiko, S.V.Lubenets, L.S.Fomenko, N.M.Fedirenko, Izv. Vuzov. Fizika., 7, 129 (1978).

18. T.Suzuki, A.Ikushima, M.Aoki, Acta Met., 12, 1231 (1964). https://doi.org/10.1016/0001-6160(64)90107-5

19. R.M.Stern, A.Granato, Internal Friction and Defects in Metals, Metallurgiya, Moscow (1965) [in Russian].

20. N.P.Kobelev, Y.M.Soifer, V.I.Alshits, FTT, 4, 1172 (1979).

21. G.A.Ermakov, E.M.Nadgorny, FTT, 13, 513 (1971). https://doi.org/10.1016/0022-510X(71)90027-X

22. Gectina, F.F.Lavrentiev, V.I.Startsev, Phys. Metals Metall., 37, 1274 (1974).

23. Alers, D.O. Tompson, J. Appl. Phys., 32, 283 (1961). https://doi.org/10.1063/1.1735992

24. L.G.Merculov, Acoustic J., 5, 432 (1959).

25. L.G.Merculov, L.A.Yakovlev, Acoustic J., 6, 244 (1960).

26. L.G.Merculov, R.V.Kovalionok, E.V.Konovodchenko, FTT, 13, 1171 (1971).

27. Kh.M.Khalilov, A.I.Agaev, Izv. AN Azerbajdg. SSR, 2, 82 (1966).

28. Kh.M.Khalilov, A.I.Agaev, FTT, 9, 2729 (1971).

29. G.A.Petchenko, Ukr. J. Phys., 56, 339 (2011).

30. O.M.Petchenko, G.O.Petchenko, Ukr. J. Phys., 55, 716 (2010).

31. G.O.Petchenko, O.M.Petchenko, Ukr. J. Phys., 58, 974 (2013). https://doi.org/10.15407/ujpe58.10.0974

32. A.M.Petchenko, G.A.Petchenko, Probl. Atom. Sci. Techn., 6, 46 (2007).

33. G.A.Petchenko, Probl. Atom. Sci. Techn., 78, 36 (2012).

34. G.A.Petchenko, Probl. Atom. Sci. Techn., 84, 55 (2013).

35. A.M.Petchenko, G.A.Petchenko, Functional Materials, 13, 403 (2006).

36. A.M.Petchenko, G.A.Petchenko, Functional Materials, 14, 475 (2007).

37. G.A.Petchenko, A.M.Petchenko, Functional Materials, 17, 421 (2010).

38. G.A.Petchenko, Functional Materials, 19, 473 (2012).

39. G.A.Petchenko, Functional Materials, 20, 315 (2013). https://doi.org/10.15407/fm20.03.315

40. A.A.Urusovskaja, A.M.Petchenko, V.I.Mozgovoi, Phys. Stat. Sol.(a), 125, 155 (1991). https://doi.org/10.1002/pssa.2211250112

41. V.P.Matsokin, G.A.Petchenko, Fiz. Nizk. Temp., 26, 705 (2000). https://doi.org/10.1063/1.1306410

42. A.M.Petchenko, G.A.Petchenko, Visnik KhNY, 865, 39 (2009).

43. A.M.Petchenko, G.A.Petchenko, Functional Materials, 15, 481 (2008).

44. A.Smakula, Z. Physik, 59, 603 (1930). https://doi.org/10.1007/BF01344801

45. D.L.Dexter, Phys. Rev., 101, 48 (1956). https://doi.org/10.1103/PhysRev.101.48

46. A.Smakula, P.Avakiant, Phys. Rev., 6, 2007 (1960).

47. V.M.Lisitzyn, Radiation Solid State Physics, Izdat. Tomskogo Politekhn. Universiteta, Tomsk ( 2008) [in Russian].

48. M.V.Galustashvili, M.G.Abramishvili, D.G.Driaev, V.G.Kvachadze, FTT, 53, 1340 (2011). https://doi.org/10.1134/S1063783411070122

49. T.Klempt, S.Schweiser, K.Schwartz et al., Solid State Commun., 119, 453 (2001). https://doi.org/10.1016/S0038-1098(01)00261-7

50. V.I.Arbuzov, Radiation Basics of Optical Materials, St. Petersburg State University of Information Technologies, St. Petersburg (2008) [in Russian]

.

Current number: