Funct. Mater. 2019; 26 (1): 71-77.

doi:https://doi.org/10.15407/fm26.01.71

Phase composition, structure, corrosion and radiation resistance of synthesized Ca10(PO4)6F2 and Ca9Sr(PO4)6F2 fluorapatites

V.A.Shkuropatenko, S.Y.Sayenko, K.A.Ulybkina, A.V.Zykova, L.M.Lytvynenko, A.G.Myronova

National Science Center &qout;Kharkiv Institute of Physics and Technology&qout;, 1 Academichna Str., 61108 Kharkiv, Ukraine

Abstract: 

The effect of electron irradiation (E up to 10 MeV) on the phase composition, structure, and corrosion resistance of synthesized fluorapatite was investigated in the study. Powders of calcium Ca10(PO4)6F2 and strontium-containing Ca9Sr(PO4)6F2 fluorapatites were synthesized by the method of co-precipitation from the solutions of the initial components. The samples of fluorapatite with a maximum value of the relative density (90-92 %) were produced by sintering in air at a temperature of 1250 °C for 6 h. The secondary phase of tricalcium phosphate α-Ca3(PO4)2 in the resulting samples was observed. Increasing the heat treatment time up to 9 h leads to a disorder in the structure of the fluorapatite. XRD analysis of glass-ceramic fluorapatite samples after electron irradiation process has shown the lines of fluorapatite and &qout;halo&qout; in the diffractogram, which indicates amorphization of fluorapatite samples. It has been established that electron irradiation to absorbed dose of 108 Gy does not significantly affect the corrosion resistance of the obtained fluorapatite samples.

Keywords: 
fluorapatite, matrix, electron irradiation, phase composition, structure, corrosion resistance.
References: 

1. A.P.Shpak, V.L.Karbovskiy, V.V.Trachevskiy, Apatites, Akademperiodika, Kiev (2002).

2. N.V.Babayevskaya, Yu.N.Savin, A.V.Tolmachev, J. Inorg. Mater., 43, 976 (2007). https://doi.org/10.1134/S0020168507090129

3. S.Ramesha, K.L.Aw, R.Tolouei et al., Ceram. Intern., 39, 111 (2013). https://doi.org/10.1016/j.ceramint.2012.05.103

4. E.Landi, A.Tampieri, G.Celotti et al., Acta Biomater., 3, 961 (2007). https://doi.org/10.1016/j.actbio.2007.05.006

5. F.Scalera, F.Gervaso, B.Palazzo et al., Engin. Mater., 758, 132 (2017). https://doi.org/10.4028/www.scientific.net/KEM.758.132

6. O.Terra, F.Audubert, N.Dacheux et al., J.Nucl. Mater., 354, 49 (2006). https://doi.org/10.1016/j.jnucmat.2006.02.094

7. R.Bros, J.Carpena, V.Sereand et al., Radiochim. Acta, 74, 277 (1996). https://doi.org/10.1524/ract.1996.74.special-issue.277

8. A.O.Merkushin, The Thetis for the Degree of Candidate of Chemical Science, Moscow (2003).

9. J.Lian, L.M.Wang, K.Sun et al., Microscopy Res. Techn., 72, 165 (2009). https://doi.org/10.1002/jemt.20669

10. S.Yu.Sayenko, V.A.Shkuropatenko, R.V.Tarasov et al., Visnik NTU &qout;KHPI&qout;, 28, 117 (2014).

11. S.Yu.Sayenko, Functional Materials, 22 (2), 263 (2015). https://doi.org/10.15407/fm22.02.263

12. R.C.Ewing, W.J.Weber, F.W.Clinard, Progress Nuclear Energy, 29(2), 63 (1995). https://doi.org/10.1016/0149-1970(94)00016-Y

13. S.M.Brekhovskikh, Yu.N.Viktorova, L.M.Landa, Radiation Effects in Glasses, Energoizdat, Moscow (1982) [in Russian].

14. A.A.Vashman, A.S.Polyakov, Phosphate Glasses with Radioactive Waste, TsNIIAtominform, Moscow (1997) [in Russian].

15. V.A.Starodubtsev, L.N.Shiyan, A.S.Portnyagin, N.N.Zausayeva, Phys. Chem. Glass, 17(5), 816 (1991).

16. W.J.Weber, R.C.Ewing, C.F.Angell et al., J. Mater. Res., 12, 1946 (1997). https://doi.org/10.1557/JMR.1997.0266

17. W.J.Weber, Proc. Mater. Sci., 7, 237 (2014). https://doi.org/10.1016/j.mspro.2014.10.031

18. T.Kanazava, Inorganic Phosphate Materials, Naukova Dumka, Kiev (1998)

.

Current number: