Funct. Mater. 2019; 26 (1): 92-99.

doi:https://doi.org/10.15407/fm26.01.92

Investigation of the effect of SiC content on the microstructure, physical properties and hardness of SiC/Ni composites

Hanan M. Makled1, Mahmudun N. Chowdhury2, Ahmed I. Ali3,4, Ibrahim S.Qassem5, Walid M. Daoush1,6

1Department of Production Technology, Faculty of Industrial Education, Helwan University, Saray-El Qoupa, El Sawah Street, 11281 Cairo, Egypt
2RMIT Centre for Additive Manufacturing, RMIT University, 3000 Melbourne, Australia
3Basic Science Department, Faculty of Industrial Education, Helwan University, Saray-El Qoupa, El Sawah Street, 11281 Cairo, Egypt
4Nanotechnology Research Center, The British University in Egypt, El Sherouk City, Suez Desert Road, 11837 Cairo, Egypt
5Curricula and Teaching Methods Department, Faculty of Education, Helwan University, Cairo, Egypt
6Department of Chemistry, college of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, KSA

Abstract: 

Nickel matrix composites reinforced with alpha-silicon carbide of various concentrations (up to 4 wt.%) were investigated. Samples were made by powder mixing followed by a process of powder technology. The resulting SiC/nickel composite powders were cold compacted at 400 MPa in a single-axis head, followed by sintering in a controlled furnace at 1000 °C in an atmosphere of sintering a hydrogen/nitrogen mixture of 3:2. The SiC/Ni powders, as well as crushed and polished consolidated composites were investigated using a scanning electron microscope and X-ray diffraction (XRD). The microstructures of the obtained sintered SiC/Ni composites show a uniform distribution of SiC particles in the nickel matrix. XRD data showed that the sintered SiC/Ni composites consist mainly of (fcc) Ni as the main phase and α-SiC phase. To assess the sintering process of the obtained SiC/Ni composites, their density, electrical conductivity, coefficient of thermal expansion at various temperatures, and hardness were measured. The relative density, electrical conductivity, and thermal expansion coefficient of the sintered SiC/Ni composites obtained decreased; hardness increased by increasing the SiC content in the nickel matrix.

Keywords: 
SiC/Ni composites, sintering, coefficient of thermal expansion, electrical conductivity, hardness.
References: 

1. X.Ai, Technology of High-Speed Cutting, 1st ed. National Defense Industry Press, Beijing (2003).

2. Y.Long, J.Zeng, D.Yu, Ceram. Int., 40, 9889 (2014). https://doi.org/10.1016/j.ceramint.2014.02.083

3. Y.Long, J,Zeng, S.Wu, Ceram. Int., 40, 9615 (2014). https://doi.org/10.1016/j.ceramint.2014.02.038

4. A.El-Tantawy, W.Daoush, A.El-Nikhaily, J.Exp. Nanoscience, 13, 174 (2018). https://doi.org/10.1080/17458080.2018.1467049

5. H.Yehia, W.Daoush, A.El-Nikhaily, Powder Metallurgy Progr., 15, 262 (2015).

6. W.Daoush, H.Park, S.Hong, Trans. Nonferrous Met. Soc. China, 24, 3562 (2014). https://doi.org/10.1016/S1003-6326(14)63502-0

7. P.K.Mehrotra, Key Eng. Mater., 138-140, 1 (1998). https://doi.org/10.4028/www.scientific.net/KEM.138-140.1

8. J.Qin, Y.Long, J.Zeng, Ceram. Int., 40, 12245 (2014). https://doi.org/10.1016/j.ceramint.2014.04.068

9. J.Gubicza, P.Arato, F.Weber, Mater. Sci. Eng. A, 259, 65 (1999). https://doi.org/10.1016/S0921-5093(98)00870-3

10. R.P.Martinho, F.J.G.Silva, A.P.M.Baptista, Wear, 263, 1417 (2007). https://doi.org/10.1016/j.wear.2007.01.048

11. J.W.C.Souza, M.C.A.Nono, M.V.Ribeiro, Mater. Des., 30, 2715 (2009). https://doi.org/10.1016/j.matdes.2008.09.041

12. W.Grzesik, J.Malecka, Manuf. Technol., 60, 121 (2011). https://doi.org/10.1016/j.cirp.2011.03.083

13. C.Tian, H.Jiang, N.Liu, Int. J. Refract. Met. Hard Mater., 29, 14 (2011). https://doi.org/10.1016/j.ijrmhm.2010.06.006

14. T.Ekstrom, M.Nygren, J. Am. Ceram. Soc., 75, 259 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb08175.x

15. V.A.Izhevskiy, L.A.Genova, J.C.Bressiani, J. Eur. Ceram. Soc., 20, 2275 (2000). https://doi.org/10.1016/S0955-2219(00)00039-X

16. S.Kurama, I.Schulz, M.Herrmann, J. Eur. Ceram. Soc., 31, 921 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.010

17. C.Roberto, da M.Silva, Mater. Sci. Eng. A, 209, 175 (1996). https://doi.org/10.1016/0921-5093(95)10133-0

18. C.Yamagishi, J.Hakoshima, S.Nakajo, Adv. Mater., 93, 919 (1994). https://doi.org/10.1016/B978-0-444-81991-8.50221-1

19. Li Dan, B.J.Hai, S.C.Moa et al., J. Am. Ceram. Soc., 94, 1523 (2011). https://doi.org/10.1111/j.1551-2916.2010.04293.x

20. M.Fanbing, W.Bo, F.G.Fang, H.Feng, Surface Coatings Techn., 213, 77 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.020

21. Y.H.Sang, L.L.Jong, J.Electrochem. Soc., 149, 189 (2002).

22. G.Z.Zou, M.S.Cao, H.B.Lin et al., J. Powder Technol., 168, 84 (2006). https://doi.org/10.1016/j.powtec.2006.07.002

23. C.H.Xu, G.Y.Wu, G.C.Xiao, B.Fang, Int. J. Refract. Met. Hard Mater., 45, 125 (2014). https://doi.org/10.1016/j.ijrmhm.2014.04.006

24. X.Ai, Z.Q.Li, J.X.Deng, Key Eng Mater, 108, 53 (1995). https://doi.org/10.4028/www.scientific.net/KEM.108-110.53

25. A.Fissel, B.Schroter, W.Richte, Appl. Phys. Lett., 66, 3182 (1995). https://doi.org/10.1063/1.113716

26. W.Daoush, O.Elkady, J. Comp. Mater., 48(30), 3735 (2014). https://doi.org/10.1177/0021998313513203

27. C.H.Xu, Y.M.Feng, R.B.Zhang, J. Mater. Process. Technol., 209, 4633 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.017

28. M.Ahmed, W.Daoush, A.El-Nikhaily, Adv.Mater. Res., 5, 131 (2016). https://doi.org/10.12989/amr.2016.5.3.131

29. W.Daoush, H.Park, K.Lee et al., Inter. J. Ref. Met. Hard Mat., 27, 669 (2009). https://doi.org/10.1016/j.ijrmhm.2008.10.017

30. W.Daoush, K.Lee, H.Park, S.Hong, Inter. J. Ref. Met. Hard Mat., 27, 83 (2009). https://doi.org/10.1016/j.ijrmhm.2008.04.003

.

Current number: