Funct. Mater. 2019; 26 (1): 92-99.
Investigation of the effect of SiC content on the microstructure, physical properties and hardness of SiC/Ni composites
1Department of Production Technology, Faculty of Industrial Education, Helwan University, Saray-El Qoupa, El Sawah Street, 11281 Cairo, Egypt
2RMIT Centre for Additive Manufacturing, RMIT University, 3000 Melbourne, Australia
3Basic Science Department, Faculty of Industrial Education, Helwan University, Saray-El Qoupa, El Sawah Street, 11281 Cairo, Egypt
4Nanotechnology Research Center, The British University in Egypt, El Sherouk City, Suez Desert Road, 11837 Cairo, Egypt
5Curricula and Teaching Methods Department, Faculty of Education, Helwan University, Cairo, Egypt
6Department of Chemistry, college of Science, Imam Mohammad ibn Saud Islamic University (IMSIU), Riyadh, KSA
Nickel matrix composites reinforced with alpha-silicon carbide of various concentrations (up to 4 wt.%) were investigated. Samples were made by powder mixing followed by a process of powder technology. The resulting SiC/nickel composite powders were cold compacted at 400 MPa in a single-axis head, followed by sintering in a controlled furnace at 1000 °C in an atmosphere of sintering a hydrogen/nitrogen mixture of 3:2. The SiC/Ni powders, as well as crushed and polished consolidated composites were investigated using a scanning electron microscope and X-ray diffraction (XRD). The microstructures of the obtained sintered SiC/Ni composites show a uniform distribution of SiC particles in the nickel matrix. XRD data showed that the sintered SiC/Ni composites consist mainly of (fcc) Ni as the main phase and α-SiC phase. To assess the sintering process of the obtained SiC/Ni composites, their density, electrical conductivity, coefficient of thermal expansion at various temperatures, and hardness were measured. The relative density, electrical conductivity, and thermal expansion coefficient of the sintered SiC/Ni composites obtained decreased; hardness increased by increasing the SiC content in the nickel matrix.
1. X.Ai, Technology of High-Speed Cutting, 1st ed. National Defense Industry Press, Beijing (2003).
2. Y.Long, J.Zeng, D.Yu, Ceram. Int., 40, 9889 (2014). https://doi.org/10.1016/j.ceramint.2014.02.083
3. Y.Long, J,Zeng, S.Wu, Ceram. Int., 40, 9615 (2014). https://doi.org/10.1016/j.ceramint.2014.02.038
4. A.El-Tantawy, W.Daoush, A.El-Nikhaily, J.Exp. Nanoscience, 13, 174 (2018). https://doi.org/10.1080/17458080.2018.1467049
5. H.Yehia, W.Daoush, A.El-Nikhaily, Powder Metallurgy Progr., 15, 262 (2015).
6. W.Daoush, H.Park, S.Hong, Trans. Nonferrous Met. Soc. China, 24, 3562 (2014). https://doi.org/10.1016/S1003-6326(14)63502-0
7. P.K.Mehrotra, Key Eng. Mater., 138-140, 1 (1998). https://doi.org/10.4028/www.scientific.net/KEM.138-140.1
8. J.Qin, Y.Long, J.Zeng, Ceram. Int., 40, 12245 (2014). https://doi.org/10.1016/j.ceramint.2014.04.068
9. J.Gubicza, P.Arato, F.Weber, Mater. Sci. Eng. A, 259, 65 (1999). https://doi.org/10.1016/S0921-5093(98)00870-3
10. R.P.Martinho, F.J.G.Silva, A.P.M.Baptista, Wear, 263, 1417 (2007). https://doi.org/10.1016/j.wear.2007.01.048
11. J.W.C.Souza, M.C.A.Nono, M.V.Ribeiro, Mater. Des., 30, 2715 (2009). https://doi.org/10.1016/j.matdes.2008.09.041
12. W.Grzesik, J.Malecka, Manuf. Technol., 60, 121 (2011). https://doi.org/10.1016/j.cirp.2011.03.083
13. C.Tian, H.Jiang, N.Liu, Int. J. Refract. Met. Hard Mater., 29, 14 (2011). https://doi.org/10.1016/j.ijrmhm.2010.06.006
14. T.Ekstrom, M.Nygren, J. Am. Ceram. Soc., 75, 259 (1992). https://doi.org/10.1111/j.1151-2916.1992.tb08175.x
15. V.A.Izhevskiy, L.A.Genova, J.C.Bressiani, J. Eur. Ceram. Soc., 20, 2275 (2000). https://doi.org/10.1016/S0955-2219(00)00039-X
16. S.Kurama, I.Schulz, M.Herrmann, J. Eur. Ceram. Soc., 31, 921 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.11.010
17. C.Roberto, da M.Silva, Mater. Sci. Eng. A, 209, 175 (1996). https://doi.org/10.1016/0921-5093(95)10133-0
18. C.Yamagishi, J.Hakoshima, S.Nakajo, Adv. Mater., 93, 919 (1994). https://doi.org/10.1016/B978-0-444-81991-8.50221-1
19. Li Dan, B.J.Hai, S.C.Moa et al., J. Am. Ceram. Soc., 94, 1523 (2011). https://doi.org/10.1111/j.1551-2916.2010.04293.x
20. M.Fanbing, W.Bo, F.G.Fang, H.Feng, Surface Coatings Techn., 213, 77 (2012). https://doi.org/10.1016/j.surfcoat.2012.10.020
21. Y.H.Sang, L.L.Jong, J.Electrochem. Soc., 149, 189 (2002).
22. G.Z.Zou, M.S.Cao, H.B.Lin et al., J. Powder Technol., 168, 84 (2006). https://doi.org/10.1016/j.powtec.2006.07.002
23. C.H.Xu, G.Y.Wu, G.C.Xiao, B.Fang, Int. J. Refract. Met. Hard Mater., 45, 125 (2014). https://doi.org/10.1016/j.ijrmhm.2014.04.006
24. X.Ai, Z.Q.Li, J.X.Deng, Key Eng Mater, 108, 53 (1995). https://doi.org/10.4028/www.scientific.net/KEM.108-110.53
25. A.Fissel, B.Schroter, W.Richte, Appl. Phys. Lett., 66, 3182 (1995). https://doi.org/10.1063/1.113716
26. W.Daoush, O.Elkady, J. Comp. Mater., 48(30), 3735 (2014). https://doi.org/10.1177/0021998313513203
27. C.H.Xu, Y.M.Feng, R.B.Zhang, J. Mater. Process. Technol., 209, 4633 (2009). https://doi.org/10.1016/j.jmatprotec.2008.10.017
28. M.Ahmed, W.Daoush, A.El-Nikhaily, Adv.Mater. Res., 5, 131 (2016). https://doi.org/10.12989/amr.2016.5.3.131
29. W.Daoush, H.Park, K.Lee et al., Inter. J. Ref. Met. Hard Mat., 27, 669 (2009). https://doi.org/10.1016/j.ijrmhm.2008.10.017
30. W.Daoush, K.Lee, H.Park, S.Hong, Inter. J. Ref. Met. Hard Mat., 27, 83 (2009). https://doi.org/10.1016/j.ijrmhm.2008.04.003
.