Funct. Mater. 2019; 26 (2): 233-237.

doi:https://doi.org/10.15407/fm26.02.233

Effect of hydrostatic extrusion on structural and magnetic properties of polycrystalline Dy

N.A.Chernyak, V.I.Sokolenko, A.V.Mats

NSC Kharkiv Institute of Physics & Technology, 1 Akademicheskaya St., 61108 Kharkiv, Ukraine

Abstract: 

Electron microscopy and X-ray diffraction methods have been used to investigate special features of polycrystalline Dy transformation (under severe plastic deformation at hydrostatic extrusion conditions) into a submicrocrystalline aggregate with a strongly pronounced texture. The deformation texture emergence correlates with the process of subdivision microcrystallites, reducing the size of coherent scattering regions. The field dependence of magnetization, a saturation magnetization value of completely grain-oriented Dy extrudates coincide with those for a Dy single crystal with imposition of the field along the direction one of b < 10\overline{1}0 > axis. The extruded Dy may be successfully used for fabricating bulk magnetic field concentrators.

Keywords: 
Dy extrudates, severe plastic deformation, submicrocrystalline structure, favorable texture, high magnetic properties.
References: 

1. K.N.R.Taylor, M.I.Darby, Physics of Earth Solids, Chapman and Hall LTD, London (1972).

2. D.Bird, S.Bole, I.Dixon et al., Physica B, 294-295, 639 (2001). https://doi.org/10.1016/S0921-4526(00)00734-1

3. M.Wayne, W.Swift, M.Mathur, IEEE Transactions on Magnetics, 10, 308 (1974). https://doi.org/10.1109/TMAG.1974.1058335

4. R.Agustsson, P.Frigola, A.Murokh et al., in: Proc. of Particle Accelerator Conf., New York, NY, USA (2011), p.1256.

5. R.Agustsson, Y.C.Chen, T.Grandsaert II et al., in: Proc. of IPAC, New Orleans, Louisiana, USA (2012), p.756.

6. B.G.Lazarev, A.A.Galkin, A.S.Bulatov et al., Fiz. Metall. i Metalloved., 57, 298 (1984).

7. B.G.Lazarev, L.S.Lazareva, N.A.Chernyak et al., Cryogenics, ICMC Supplement, 32, 217 (1992).

8. B.G.Lazarev, L.S.Lazareva, N.A.Chernyak et al., Phys. Met. Metallogr., 86, 255 (1998).

9. B.G.Lazarev, O.V.Cherny, L.S Lazareva et al., Cryogenics, ICMC Supplement, 32, 593 (1992).

10. E.Tjukanov, A.Ya.Katunin, A.I.Safonov et al., Physica B, 178, 129 (1992). https://doi.org/10.1016/0921-4526(92)90187-W

11. A.E.Romanov, V.I.Vladimirov, Dislocations in Solids, ed. by F.R.N.Nabarro, Elsevier, Amsterdam, 9, 191 (1992).

12. J.J.Rhyne, S.Foner, E.J.McNiff, R.Doclo, J. Appl. Phys., 39, 892 (1968). https://doi.org/10.1063/1.1656324

13. B.G.Lazarev, L.S.Lazareva, N.A.Chernyak et al., Fiz. Metall. i Metalloved., No.5, 103 (1990).

14. B.G.Lazarev, N.A.Chernyak, L.S.Lazareva, in: Book Abstr. of the 17th All-Union Conf. on Physics of Magnetic Phenomena, Donetsk, Ukraine (1985), p.135.

15. I.Prigogine, I.Stengers, Order Out of Chaos, N.Y., Bantam (1984).

16. A.A.Nazarov, N.A.Enikeev, A.E.Romanov et al., Acta Materialia, 54, 985 (2006). https://doi.org/10.1016/j.actamat.2005.10.025

17. D.Walgraef, Spatio-Temporal Pattern Formation, Springer, N.Y. (1996). https://doi.org/10.1007/978-1-4612-1850-0

.

Current number: