Вы здесь

Funct. Mater. 2019; 26 (2): 238-241.

doi:https://doi.org/10.15407/fm26.02.238

High-pressure-induced relaxation of normal electrical resistance in single-crystal YBa2Cu3O7-x underdoped with oxygen

Yu.Boiko1, G.Khadzhai1, S.Vovk1, R.Vovk1,2, M.Drigailo1, V.Gres'2, J.Gralewski3

1V.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
2ICST Faculty, Ukrainian State University of Railway Tranport, 7 Feyerbah Sq., 61077 Kharkiv, Ukraine
3Zaklad Podstaw Techniki i Ekologii Przemyslowej Politechnika, Lodzka ul. Piotrkowska, 266 90-924 Lodz, Rzeczpospolita Polska

Abstract: 

The effect of the external hydrostatic pressure P ~ 4 kbar on the relaxation of the normal electrical resistance of YB2Cu3O7-x single crystals with oxygen deficiency was investigated. It has been established that a high pressure significantly intensifies the process of diffusion coalescence of oxygen clusters, i.e. causes the growth of their average size. In turn, an increase in the size of oxygen clusters leads to the appearance of a phase, which is characterized by a higher critical temperature of the superconducting transition Tc.

Keywords: 
YB<sub>2</sub>Cu<sub>3</sub>O<sub>7-x</sub> single crystals, hydrostatic pressure, diffusion coalescence, relaxation, oxygen deficiency.
References: 

1. J.Kircher, M.Cardona, A.Zibold et al., Phys. Rev. B. 48, 9684 (1993). https://doi.org/10.1103/PhysRevB.48.9684

2. R.V.Vovk, A.L.Solovyov, Low. Temp. Phys., 44, 81 (2018). https://doi.org/10.1063/1.5020905

3. A.Driessen, R.Griessen, N.Koeman et al., Phys. Rev. B, 36, 5602 (1987). https://doi.org/10.1103/PhysRevB.36.5602

4. A.L.Solovjov, L.V.Omelchenko, R.V.Vovk et al., Physica B, 493, 58 (2016). https://doi.org/10.1016/j.physb.2016.04.015

5. J.D.Jorgencen, Pei Shiyou, P.Lightfoot et al., Physica C, 167, 571 (1990). https://doi.org/10.1016/0921-4534(90)90676-6

6. R.V.Vovk, Y.I.Boiko, V.V.Bogdanov et al., Physica C, 536, 26 (2017). https://doi.org/10.1016/j.physc.2017.04.001

7. F.Martinez, B.Sandiumenge, S.Pinol et al., Appl. Phys. Lett., 66, 772 (1995). https://doi.org/10.1063/1.114089

8. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., J. Mater. Sci: Mater. Electron., 25, 5226 (2014) DOI 10.1007/s10854-014-2292-5. https://doi.org/10.1007/s10854-014-2292-5

9. D.A.Lotnyk, R.V.Vovk, M.A.Obolenskii et al., J. Low Temp. Phys., 161, 387 (2010). DOI 10.1007/s10909-010-0198-z. https://doi.org/10.1007/s10909-010-0198-z

10. R.Menegotto Costa, F.T.Dias, P.Pureu, X.Obradors, Physica C, 495, 202 (2013). https://doi.org/10.1016/j.physc.2013.09.015

11. M.A.Obolenskii, A.V.Bondarenko, R.V.Vovk, A.A.Prodan, Low Temp. Phys., 23, 882 (1997). https://doi.org/10.1063/1.593496

12. H.A.Borges, M.A.Continentino, Solid State Commun., 80, 197 (1991). https://doi.org/10.1016/0038-1098(91)90180-4

13. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater Sci: Mater. Electron., 22, 20 (2011). DOI:10.1007/s10854-010-0076-0 https://doi.org/10.1007/s10854-010-0076-0

14. M.Sarikaya, R.Kikuchi et al., Physica C, 152, 161 (1988). https://doi.org/10.1016/0921-4534(88)90010-X

15. A.V.Bondarenko, A.A.Prodan, M.A.Obolenskii et al., Low Temp. Phys., 27, 339 (2001). https://doi.org/10.1063/1.1374717

16. R.V.Vovk, Z.F.Nazyrov, M.A.Obolenskii et al., J. Alloys and Compd., 509, 4553 (2011). https://doi.org/10.1016/j.jallcom.2011.01.102

17. K.Widder, A.Zibold, M.Merz et al., Physica C, 232, 82 (1994). https://doi.org/10.1016/0921-4534(94)90296-8

18. D.Balla, A.V.Bondarenko, R.V.Vovk et al., Low Temp. Phys., 23, 777 (1997). https://doi.org/10.1063/1.593445

19. O.V.Dobrovolskiy, M.Huth, V.A.Shklovskij, R.V.Vovk. Sci. Reports, 7, 13740 (2017). DOI:10.1038/s41598-017-14232-z. https://doi.org/10.1038/s41598-017-14232-z

20. O.V.Dobrovolskiy, V.M.Bevz, M.Yu.Mikhailov et al., Nature Commun, 22, 4927 (2018). DOI: 10.1038/s41467-018-07256-0. https://doi.org/10.1038/s41467-018-07256-0

21. A.L.Solovyov, L.V.Omelchenko, V.B.Stepanov et al., Phys. Rev. B, 94, 224505 (2016). https://doi.org/10.1103/PhysRevB.94.224505

22. L.Mendonca Ferreira et al., Phys. Rev. B , 69, 212505 (2004). https://doi.org/10.1103/PhysRevB.69.212505

23. V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., Modern Phys. Lett. B (MPLB), 24, 2295 (2010). https://doi.org/10.1142/S0217984910024675

24. J.Ashkenazi, J. Supercond. Nov. Magn., 24, 1281 (2011). https://doi.org/10.1007/s10948-010-0823-8

25. R.Griessen, Phys. Rev. B, 36, 5284 (1987). https://doi.org/10.1103/PhysRevB.36.5284

26. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Current Appl. Phys., 14, 1779 (2014). https://doi.org/10.1016/j.cap.2014.10.002

27. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy, Solid State Commun., 204, 64 (2015). https://doi.org/10.1016/j.ssc.2014.12.008

28. P.Schleger et al., Physica C, 176, 261 (1991). https://doi.org/10.1016/0921-4534(91)90722-B

29. V.Vovk et al., J. Alloys Compd., 453, 69 (2008). https://doi.org/10.1016/j.jallcom.2006.11.169

30. Yu.I.Boiko, V.V.Bogdanov, R.V.Vovk et al., Mater. Res. Express, 4, 096001 (2017). DOI:10.1088/2053-1591/aa88f3. https://doi.org/10.1088/2053-1591/aa88f3

31. K.Mitsen, O.Ivanenko, Physica C, 408-410, 422 (2004). https://doi.org/10.1016/j.physc.2004.03.017

32. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Mater. Sci.:Mater. Electron., 20, 858 (2009). https://doi.org/10.1007/s10854-008-9806-y

33. R.V.Vovk, C.D.H.Williams, A.F.G.Wyatt, Phys. Rev. Lett., 91, 235302 (2003). https://doi.org/10.1103/PhysRevLett.91.235302

34. R.V.Vovk, N.R.Vovk, G.Ya.Khadzhai et al., Solid State Commun., 190, 18 (2014). DOI:10.1016/j.ssc.2014.04.004 https://doi.org/10.1016/j.ssc.2014.04.004

35. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Comp., 464, 58 (2008). https://doi.org/10.1016/j.jallcom.2007.10.040

36. R.V.Vovk, G.Ya.Khadzhai, O.V.Dobrovolskiy et al., Physica C, 516, 58 (2015). DOI:10.1016/j.physc.2015.06.011. https://doi.org/10.1016/j.physc.2015.06.011

37. R.V.Vovk, M.A.Obolenskii, A.A.Zavgorodniy et al., J. Alloys Compd., 485, 121 (2009)

.

Current number: