Вы здесь

Funct. Mater. 2019; 26 (2): 249-253.

doi:https://doi.org/10.15407/fm26.02.249

Interaction of amino acids with cholesteric liquid crystals: spectrophotometric evidence

A.N.Samoilov1, S.S.Minenko1, Z.M.Mykytyuk2, L.N.Lisetski1

1Institute for Scintillation Materials, STCInstitute for Single Crystals, National Academy of Sciences of Ukraine, 60 Nauky Ave., 61001 Kharkiv, Ukraine
2Dept. of Electronic Devices, National University Lviv Polytechnics, 12 S.Bandery Str., 79013 Lviv, Ukraine

Abstract: 

Effects of amino acids on selective reflection and optical transmission of steroid and non-steroid cholesteric liquid crystal systems have been studied. At temperatures close to the isotropic transition, optical transmission in the vicinity of selective reflection band has been shown to be highly sensitive to the presence of amino acids despite very low solubility of these substances. The response of different types of cholesterics was qualitatively similar. For nematic-cholesteric mixture BLO61, an anomalous decrease in optical transmission was observed in a narrow temperature range close to the isotropic transition, with subsequent substantial shift of the selective reflection maximum towards longer wavelengths. Possibilities are discussed of using the proposed approach in development of liquid crystal sensor materials for detection of biological substances.

Keywords: 
liquid crystals, composites, amino acids, optical transmission.
References: 

1. J.Zmija, S.Klosowicz, W.Borys, Cholesteryczne Ciekle Krysztaly w Detekcji Promeniowania. Warszawa: Wyd. Naukowo-Techniczne, Warszawa (1989).

2. J.D.Wright, P.Roisin, G.P.Rigby et al., Sens. Actuat. B, 13, 276 (1993). https://doi.org/10.1016/0925-4005(93)85380-S

3. D.A.Winterbottom, R.Narayanaswamy, I.R.Raimundo, Sens. Actuat., B, 90, 52 (2003). https://doi.org/10.1016/S0925-4005(03)00021-2

4. A.Mujahid, H.Stathopoulos, P.A.Lieberzeit et al., Sensors, 10, 4887 (2010). https://doi.org/10.3390/s100504887

5. H.J.Van Treeck, D.R.Most, B.A.Grinwald et al., Sens. Actuat. B, 158, 104 (2011). https://doi.org/10.1016/j.snb.2011.05.049

6. X.Ding, K.-L.Yang, Sens. Actuat., B, 173, 607 (2012). https://doi.org/10.1016/j.snb.2012.07.067

7. O.Aksimentyeva, Z.Mykytyuk, A.Fechan et al., Mol. Cryst. Liq. Cryst., 589, 82 (2014). https://doi.org/10.1080/15421406.2013.872354

8. M.Vistak, O.Sushinskiy, Z.Mykytyuk et al., Sens. Actuat., A, 235, 165 (2015). https://doi.org/10.1016/j.sna.2015.10.001

9. P.V.Shibaev, M.Wenzlick, J.Murray et al., Hindawi, Article ID 729186 (2015).

10. P.V.Shibaev, D.Chiappetta, R.L.Sanford et al., Macromol., 39, 3986 (2006). https://doi.org/10.1021/ma052046o

11. S.G.Stepanian, I.D.Reva, E.D.Radchenko et al., J. Phys. Chem. A, 102, 4623 (1998). https://doi.org/10.1021/jp973479z

12. V.B.Pivovarov, S.G.Stepanian, I.D.Reva et al., Spectrochim. Acta A, 51, 843 (1995). https://doi.org/10.1016/0584-8539(94)00189-I

13. S.G.Stepanian, A.Yu.Ivanov, D.A.Smyrnova et al., J. Mol. Struct., 1025, 6 (2012). https://doi.org/10.1016/j.molstruc.2012.04.093

14. S.G.Stepanian, A.Yu.Ivanov, L.Adamowicz. J. Mol. Spectrosc., 320, 13 (2016). https://doi.org/10.1016/j.jms.2015.12.010

15. G.S.Chilaya, L.N.Lisetski, Mol. Cryst. Liq. Cryst., 140, 243 (1986). https://doi.org/10.1080/00268948608080157

16. L.Lisetski, M.Soskin, N.Lebovka, in: Physics of Liquid Matter: Modern Problems, Chapt. 10, Springer Proc. in Physics, v.171. Springer Int. Publ., Switzerland (2015), p.243.

17. L.A.Bulavin, L.N.Lisetski, S.S.Minenko et al., J. Mol. Liq., 267, 279 (2018). https://doi.org/10.1016/j.molliq.2017.12.078 18 O.Sushinskyi, I.Kremer, M.Vistak et al., IEEE Xplore, TCSET-2018, 724 (2018). 19 N.Avci, A.Nesrullajev, S.Oktik. J. Opt. Adv. Mater., 9, 413 (2007).

20. L.N.Lisetski, S.S.Minenko, A.S.Samoilov, N.I.Lebovka. J. Mol. Liq., 235, 90 (2017). https://doi.org/10.1016/j.molliq.2016.11.125

.

Current number: