Funct. Mater. 2019; 26 (2): 254-261.


Percolation effects and self-organization processes in Bi2(Te1-xSex)3 solid solutions

E.I.Rogacheva, T.N.Shelest, E.V.Martynova, A.N.Doroshenko, O.N.Nashchekina, Yu.V.Men'shov

National Technical University Kharkiv Polytechnic Institute, 2 Kyrpychova St., 61002 Kharkiv, Ukraine


The room-temperature dependences of microhardness H, electrical conductivity σ, the Seebeck coefficient S, and thermoelectric power factor P on composition of Bi2(Te1-xSex)3 solid solutions were measured in the concentration range x = 0 - 0.07. In the intervals x = 0.0075 - 0.0175 and x = 0.025 - 0.035, an anomalous decrease in H and S and increase in σ with increasing x were observed. The first concentration-dependent anomaly was attributed to critical phenomena, accompanying a percolation-type phase transition. The percolation threshold xc and the radius of deformation spheres R0 around Se impurity atoms were estimated. The second anomaly is assumed to be connected with a short-range ordering in the solid solution. The non-monotonic character of the dependences of H on the load on an indenter, whose behavior depended on the impurity concentration, was attributed to the interaction of the deformation fields created by dislocations and impurity atoms.

solid solutions, composition, microhardness, electrical conductivity, Seebeck coefficient, percolation, self-organization.

1. Thermoelectrics Handbook: Macro to Nano, ed. by D.M.Rowe, CRC Press, Taylor & Francis Group, Boca Raton (2005).

2. Materials Aspect of Thermoelectricity, ed. by C.Uher, CRC Press, Boca Raton (2016), 

3. V.K.Grigorovich, Hardness and Microhardness of Metals, Nauka, Moscow (1976) [in Russian].

4. S.I.Bulychev, V.P.Alyokhin, Testing of Materials by Continuous Indentation of the Indenter, Mashinostroenie, Moscow (1990) [in Russian].

5. D.Stauffer, A.Aharony, Introduction to Percolation Theory, Taylor & Francis, Washington, DC (1992).

6. B.I.Shklovskii, A.L.Efros, Electronic Properties of Doped Semiconductors, Springer, Berlin, Heidelberg (1984). 

7. E.I.Rogacheva, Jpn. J. Appl. Phys., 32, 775 (1993).

8. E.I.Rogacheva, J. Thermoelectr., 2, 61 (2007).

9. E.I.Rogacheva, O.N.Nashchekina, in: Advanced Thermoelectric Materials, ed. by Chong Rae Park, 15 March 2019, John Willey & Sons (2019), p.383.

10. E.I.Rogacheva, G.V.Gorne, N.K.Zhigareva, A.B.Ivanova, Inorg.Mater., 27, 194 (1991).

11. E.I.Rogacheva, T.V.Tavrina, Inorg. Mater., 33, 1013 (1997).

12. V.F.Bankina, N.Kh.Abrikosov, J. Neorgan. Chemistry, 9, 93 (1964).

13. O.B.Sokolov, S.Ya.Skipidarov, N.I.Duvankov, G.G.Shabunina, J. Cryst. Growth, 262, 442 (2004).

14. T.C.Chasapis, D.Koumoulis, B.Leung et al., APL Materials, 3, 083601 (2015).

15. T.Suzuki, H.Yoshinaga, S.Takeuchi, Dislocation Dynamics and Plasticity, Springer-Verlag. Berlin-Heidelberg (1991).

16. E.I.Rogacheva, A.V.Budnik, O.S.Vodorez, M.V.Dobrotvorskaya, J. Thermoelectr., 6, 42 (2014).

17. J.Navratil, J.Horak, T.Plechacek et al., J. Solid State Chemistry, 177, 1704 (2004).

18. K.B.Shalimova, Physics of Semiconductors, Lan, Moscow (2010) [in Russian].

19. V.I.Vladimirov, in: the Issues of Theory of Defects in Crystals, Nauka, Sankt-Peter. (1987), p.43 [in Russian].

20. E.I.Rogacheva, O.S.Vodorez, V.I.Pinegin, O.N.Nashchekina, J. Mater. Res., 26, 1627 (2011).

21. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, M.S.Dresselhaus, Appl. Phys. Letters, 109, 131906 (2016). DOI:10.1063/1.4963880. 

22. E.I.Rogacheva, A.N.Doroshenko, O.N.Nashchekina, Functional Materials, 25, 720 (2018).


Current number: