Funct. Mater. 2019; 26 (2): 284-288.

doi:https://doi.org/10.15407/fm26.02.284

The effect of heat treatment on the temperature dependence of the ferromagnetic resonance in nanoparticles ZnFe2O4

M.Miliaiev1, A.Vakula1,2, S.Tarapov1,2,3, A.Belous4, S.Solopan4

1A.Usikov Institute for Radiophysics and Electronics, National Academy of Sciences of Ukraine, 12 Acad. Proskura Str., 61085 Kharkiv, Ukraine
2Kharkiv National University of Radio Electronics, 14 Nauky Ave.,61166 Kharkiv, Ukraine
3V.N.Karazin Kharkiv National University, 4 Svobody Sq., 61022 Kharkiv, Ukraine
4V.I.Vernadsky Institute of General and Inorganic Chemistry, National Academy of Sciences of Ukraine, 32/34 Palladina Blvd., 03142 Kyiv, Ukraine

Abstract: 

Microstructural, magnetic properties and temperature magnetic resonance of ZnFe2O4 nanoparticles synthesized by precipitation from non-aqueous solutions has been study in this work. Temperature dependence of magnetization has been measured by quasistatic magnetic measurements. Temperature dependence of ferromagnetic resonance has been measured by ESR technique. It is determined that heat treatment leads to an increase the frequency of the ferromagnetic resonance peak and an width of the resonance line. This is most likely caused by a change in the ratio of the contributions of dipole-dipole interaction fields, surface anisotropy and magnetoelastic anisotropy to the total magnetic anisotropy field.

Keywords: 
ZnFe<sub>2</sub>O<sub>4</sub>, nanostructures, magnetic materials, chemical synthesis, magnetic properties, ESR, FMR.
References: 

1. C.Hou, H. Yu.Q.Zhang et al., J. Alloys. Comp., 491, 1 (2010). https://doi.org/10.1016/j.jallcom.2009.10.086

2. I.H.Gul, F.Amin, A.Z.Abbasi et al., Scripta Materialia, 56, 6 (2007). https://doi.org/10.1016/j.scriptamat.2006.11.020

3. T.Slatineanu, A.R.Iordan, V.Oancea, M.N.Palamaru et al., Mater. Sci. Eng. B, 178, 16 (2013). https://doi.org/10.1016/j.mseb.2013.06.014

4. R.Arulmurugan, B.Jeyadevan, G.Vaidyanathan et al., JMMM, 288 (2005). https://doi.org/10.1016/j.jmmm.2004.09.138

5. O.V.Yelenich, S.O.Solopan, T.V.Kolodiazhnyi et al., Mater. Chem. Phys., 146 (2014). https://doi.org/10.1016/j.matchemphys.2014.03.010

6. A.S.Vakula, S.V.Nedukh, S.I.Tarapov et al., Radiotechnics, 176 (2014).

7. A.B.Granovsky, A.A.Kozlov, T.V.Bagmut et al., Phys. Solid State, 47, 4 (2005). https://doi.org/10.1134/1.1913990

8. A.A.Girich, M.A.Miliaiev, S.B.Nedukh et al., Telecommunic. Radio Eng., 8, 73 (2014). https://doi.org/10.1615/TelecomRadEng.v73.i8.80

9. D.Peddis, F.Orr'u, A.Ardu et al., Chem. Mater., 24, 6 (2012). https://doi.org/10.1021/cm203280y

10. S.I.Tarapov, Yu.P.Machekhin, A.S.Zamkovoy, Magnetic Resonance for Optoelectronic Materials Investigating, Collegium, Kharkov (2008).

11. A.S.Vakula, Radiophysics and Electronics, 6, 3 (2015).

12. A.G.Gurevich, G.A.Melkov, Magnetic Ocillations and Waves, Fizsmatlit, Moscow (1994) .

13. S.V.Vonsovsky, Magnetism, Nauka, Moscow (1971) [in Russian].

14. E.S.Borovik, A.S.Milner, V.V.Eremenko, Lectures on Magnetism, Kharkov University, Kharkov (1972).

Current number: