Вы здесь

Funct. Mater. 2019; 26 (2): 310-318.

doi:https://doi.org/10.15407/fm26.02.310

Structural engineering and functional properties of vacuum-arc coatings of high-entropy (TiZrNbVHf)N and (TiZrNbVHfTa)N alloys nitrides

O.V.Sobol'1, Osman Dur2, A.A.Postelnyk1, Zh.V.Kraievska1

1National Technical University Kharkiv Polytechnic of Institute, 2 Kyrpychov Str., 61002 Kharkiv, Ukraine
2Hacettepe University Technopolis, Universiteler Mahallesi 1596. Cadde 6. F-Blok Kat:3 Beytepe, 06800 Ankara, Turkey

Abstract: 

The effect of nitrogen pressure during the deposition of vacuum-arc (TiZrNbVHf)N and (TiZrNbVHfTa)N coatings on their phase-structural state, substructure and resistance to abrasive wear was investigated. It was established that in multi-element (based on high-entropy alloys) (TiZrNbVHf)N and (TiZrNbVHfTa)N coatings obtained in a nitrogen atmosphere in the range of nitrogen pressures PN = 2.5 ·10-4-4.5 ·10-3 Torr, a single-phase state is formed (based on cubic crystal lattice of structural type NaCl). The use of a multi-element composition with a single-phase state with a cubic lattice allows for (Ti-V-Zr-Nb-Hf-Ta)N coatings to achieve high microstrain values (up to 1.2 %) at low deposition pressure. It was found that high-entropy nitride coatings with low abrasive wear are characterized by a crystallite grain size of less than 50 nm, the absence or low level of texture perfection [111], and the presence of a rather high microstrain in crystallites (reaching 1.2 %). The reasons for the observed changes in the structural state and substructure of multi-element nitride coatings and their effect on abrasive resistance are discussed.

Keywords: 
high-entropy alloys, coatings, nitrogen pressure, bias potential, texture, abrasive wear.
References: 

1. M.Bourebia, L.Laouar, H.Hamadache, S.Dominiakn, Surface Eng. 33, 255 (2017). https://doi.org/10.1080/02670844.2016.1232778

2. O.V.Sobol', A.A.Meilekhov, Techn. Phys. Lett., 44, 63 (2018). https://doi.org/10.1134/S1063785018010224

3. V.I.Ivashchenko, S.N.Dub, P.L.Scrynskii et al., J.Superhard Mater., 38, 103 (2016). https://doi.org/10.3103/S1063457616020040

4. O.V.Sobol', Phys. .Solid State, 49, 1161 (2007). https://doi.org/10.1134/S1063783407060236

5. J.W.Yeh, S.K.Chen, S.J.Lin et al., Adv. Eng. Mater., 6, 299 (2004). https://doi.org/10.1002/adem.200300567

6. R.Raghavan, K.C.Hari Kumar, B.S.Murty, J. Alloys.Comp., 544, 152 (2012). https://doi.org/10.1016/j.jallcom.2012.07.105

7. D.B.Miracle, O.N.Senkov, Acta Mater., 122, 448 (2017). https://doi.org/10.1016/j.actamat.2016.08.081

8. O.N.Senkov, G.B.Wilks, J.M.Scott, D.B.Miracle, Intermetal., 11, 698 (2011). https://doi.org/10.1016/j.intermet.2011.01.004

9. H.Jiang, K.Han, X.Gao et al., Mater. Design, 142, 101 (2018). https://doi.org/10.1016/j.matdes.2018.01.025

10. S.Guo, C.T.Liu, Progr. Natur. Science: Mater. Intern., 21, 433 (2011). https://doi.org/10.1016/S1002-0071(12)60080-X

11. C.-Y.Cheng, Y.-C.Yang, Y.-Z.Zhong et al., Current Opinion Solid State Mater. Sci., 21, 299 (2017). https://doi.org/10.1016/j.cossms.2017.09.002

12. M.-H.Hsieh, M.-H.Tsai, W.-J.Shen, J.-W.Yeh, Surf. Coat. Techn., 221, 118 (2013). https://doi.org/10.1016/j.surfcoat.2013.01.036

13. K.-H.Cheng, C.-H.Lai, S.-J.Lin, J.-W.Yeh, Thin Solid Films, 519, 3185 (2011). https://doi.org/10.1016/j.tsf.2010.11.034

14. P.K.Huang, J.W.Yeh, J. Phys, D: Appl. Phys., 42, 115401 (2009). https://doi.org/10.1088/0022-3727/42/11/115401

15. O.N.Senkov, J.M.Scott, S.V.Senkova, D.B.Miracle, J. Alloys. Comp., 509, 6043 (2011). https://doi.org/10.1016/j.jallcom.2011.02.171

16. O.V.Sobol', A.A.Andreev, V.F.Gorban' et al., Techn. Phys. Lett., 38, 616 (2012). https://doi.org/10.1134/S1063785012070127

17. K.L.Rutherford, I.M.Hutchings, Surf, Coat, Techn, 79, 231 (1996). https://doi.org/10.1016/0257-8972(95)02461-1

18. O.V.Sobol, A.A.Andreev, V.F.Gorban, Metal Sci. Heat Treatm., 58, 40 (2016). https://doi.org/10.1007/s11041-016-9962-2

19. A.A.Andreev, V.N.Voyevodin, O.V.Sobol' et al., Probl. Atom. Scienc. Techn., 87, 142 (2013)

.

Current number: