Вы здесь

Funct. Mater. 2019; 26 (2): 319-324.

doi:https://doi.org/10.15407/fm26.02.319

Low-temperature viscoelastic relaxation in PMA polyimide (Kapton)

Yu.A.Semerenko

B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, 47 Nauky Ave., 61103 Kharkiv, Ukraine

Abstract: 

In the temperature range 4.2-350 K for the first time was studied the temperature dependence of the dynamic Young's modulus and acoustic absorption of the polyimide film PMA (Kapton). Two low-temperature relaxation processes on the temperature dependences of the acoustic properties of the PMDA/ODA polyimide are recorded: <$E delta>-relaxation at 45 K and β-relaxation at 185 K. A microscopic interpretation of the mechanisms is responsible for the occurrence of <$E delta> and β relaxation in the PMDA/ODA polyimide is proposed. Estimates of the activation energy for these relaxation processes are obtained: δ-relaxation - 0.05 eV, β-relaxation - 0.7 eV.

Keywords: 
viscoelastic relaxation, Young's modulus, kapton, PMDA/ODA, low-temperature.
References: 

1. N.A.Andronova, M.I.Bessonov, L.A.Laus, A.P.Rudakov, Polyimides: A New Class of Thermally Stable Polymers, Nauka, Leningrad (1968) [in Russian].

2. K.L.Mittal, Polyimides and Other High-Temperature Polymers: Synthesis, Characterization and Applications. Leiden, Boston (2009). https://doi.org/10.1163/ej.9789004170803.i-424

3. A.A.Askadskij, Struktura i Svojstva Teplostojkih Polimerov, Himija, Moscow (1981) [in Russian].

4. S.V.Vinogradova, V.A.Vasnev, Polycondensation Processes and Polymers, Nauka, Moscow (2000) [in Russian].

5. A.N.Krasovskii, N.P.Antonov, M.M.Koton et al., Polymer Sci., 21, 1038 (1979). https://doi.org/10.1016/0032-3950(79)90211-9

6. M.Kotera, T.Nishino, K.Nakamae, Polymer, 41, 3615 (2000). https://doi.org/10.1016/S0032-3861(99)00546-7

7. A.P.Rudakov, M.I.Bessonov, M.M.Koton et al., Doklady Akademii Nauk SSSR, 161, 617 (1965).

8. V.P.Soldatov, G.I.Kirichenko, V.V.Abraimov et al., Low Temp. Phys., 42, 817 (2016). https://doi.org/10.1063/1.4963917

9. Yu.A.Semerenko, G.I.Kirichenko, V.P.Soldatov, in: Abstr. Int. Conf. DFMN-2013, Moscow (2013), p.615.

10. Yu.A.Semerenko, G.I.Kirichenko, V.P.Soldatov, in: Abstr. Int. Conf. Physical Phenomena in Solids 2015, Kharkiv (2015), p.102.

11. A.Mitrofanov, P.Apel, I.Blonskaja, O.Orelovich, Tech. Phys., 76, 121 (2006).

12. I.V.Gofman, I.V.Abalov, V.E.Yudin, V.G.Tiranov, Phys.Solid State, 53, 1509 (2011). https://doi.org/10.1134/S1063783411070134

13. C.E.Sroog, A.L.Endrey, C.V.Abramo et al., J. Polym. Sci., A3, 1373 (1965). https://doi.org/10.1002/pol.1965.100030410

14. I.S.Braude, N.N.Galtsov, V.G.Geidarov et al., Low Temp. Phys., 43, 1226 (2017). https://doi.org/10.1063/1.5008418

15. Liliana Burakowski Nohara, Michelle Leali Costa, Mauro Angelo Alves et al., Mat. Res., 13, 245 (2010). https://doi.org/10.1590/S1516-14392010000200020

16. Jong-Hun Park, Ji-Hwan Lee, Aloysius Soon, Phys. Chem. Chem. Phys., 18, 21893 (2016). https://doi.org/10.1039/C6CP03249D

17. Liquid-Crystalline Order in Polymers, ed. by A.Blyumshtein, Nauka, Moscow (1981) [in Russian].

18. Modern Methods for Polymer Characterization, ed. by G.L.Slonimsky, Khimiya, Moscow (1982) [in Russian].

19. M.Hasegawa, S.Horii, Polymer J., 39, 610 (2007). https://doi.org/10.1295/polymj.PJ2006234

20. P.M.Morse, Vibration and Sound, McGraw-Hill, New York (1948).

21. H.M.Simpson, A.Sosin, Rev. Sci. Instrum., 48, 1392 (1977). https://doi.org/10.1063/1.1134903

22. V.D.Natsik, Yu.A.Semerenko, Low Temp. Phys., 45, 551 (2019). https://doi.org/10.1063/1.5097366

23. R.E.Barker, J. Appl. Phys., 38, 4234 (1967). https://doi.org/10.1063/1.1709110

24. Yu.A.Semerenko, Pribory. Tekhn. Eksper. 48, 162 (2005). https://doi.org/10.1007/s10786-005-0107-x

25. Yu.A.Semerenko, Instr. Exper. Techn., 48, 608 (2005). https://doi.org/10.1007/s10786-005-0107-x

26. M.V.Zinov'ev, V.A.Koval', L.I.Danilenko, V.P.Soldatov, Strength Mater, 6, 598 (1972).

27. I.I.Perepechko, Acoustic Methods of Investigating Polymers, Khimiya, Moscow (1973) [in Russian].

28. M.Baccaredda, Chim. Ind., 44, 1383 (1962).

29. E.A.Friedman, A.J.Ritger, R.D.Andrews, J. Appl. Phys., 40, 4243 (1969). https://doi.org/10.1063/1.1657182

30. I.I.Perepechko, Low-Temperature Properties of Polymers, Khimiya, Moscow (1977)

31. F.P.Reding, J. Polymer Sci., 21, 547 (1969). https://doi.org/10.1002/pol.1956.120219919

32. J.A.Sauer, R.G.Saba, J. Macromol. Sci.-Chem., A3, 1217 (1969). https://doi.org/10.1080/10601326908051825

33. P.D.Golub', I.I.Perepechko, Akusticheskij Zhurnal, 20, 38 (1974).

34. Y.S.Papir, E.Baer, J. Appl. Phys., 42, 4667 (1971). https://doi.org/10.1063/1.1659837

35. V.E.Smirnova, I.V.Gofman, V.K.Lavrent'ev, V.P.Sklizkova, Polymer Sci., A49, 1114 (2007). https://doi.org/10.1134/S0965545X07100082

36. S.P.Papkov, A.T.Kalashnik, Polymer Sci., A26, 2505 (1984). https://doi.org/10.1016/0032-3950(84)90204-1

37. Y.S.Papir, E.Baer, Mater. Sci. Eng., 8, 310 (1971). https://doi.org/10.1016/0025-5416(71)90098-X

38. K.Miki et al., Japan J. Appl. Phys., 5, 818 (1971). https://doi.org/10.1143/JJAP.5.818

39. D.H.Reneker, J. Polymer Sci.. 59, S39 (1962). https://doi.org/10.1002/pol.1962.1205916831

40. E.S.Ciark, in: Cryogenic Properties of Polymers. ed. by T.T.Seratini and J.L.Koening, Marcel Dekker, New York (1967).

41. W.Pechhold, Koll-Z. Bd., 228, S1 (1968). https://doi.org/10.1007/BF02125760

42. P.de Santis et al., J. Polymer Sci., A1, 1383 (1963). https://doi.org/10.1002/pol.1963.100010426

43. R.G.Brown, J. Chem. Phys., 40, 2900 (1964). https://doi.org/10.1063/1.1724924

44. J.L.Koenig, F.J.Boerio, J. Chem. Phys., 52, 4170 (1970). https://doi.org/10.1063/1.1673627

45. A.S.Nowick, B.S.Berry, Anelastic Relaxation in Crystalline Solids, Academic, New York (1972).

46. V.S.Postnikov, Internal Friction in Metals and Alloys, Springer, New York (1967). https://doi.org/10.1007/978-1-4899-4725-3

47. V.D.Natsik, Yu.A.Semerenko, Low Temp. Phys., 42, 138 (2016). https://doi.org/10.1063/1.4942907

Current number: