Funct. Mater. 2019; 26 (2): 325-331.

doi:https://doi.org/10.15407/fm26.02.325

Reseach on the antioxidant activity of glycoproteins extracted from Perna Viridis (GPP)

Shuji Liu1,2,3, Zhiyu Liu2,3, Yongchang Su2,3, Jingna Wu2,3, Min Xu2,3, Yin Wang2,3, Chen Bei2,3, Kun Qiao2,3, Jinquan Chen1

1College of Food Science, Fujian Agriculture and Forestry University, 350002 Fuzhou, Fujian Province, China
2Fisheries Reasearch Instiute of Fujian, National Research and Development Center for Marine Fish Processing (Xiamen), Key Laboratory of Cultivation and High-value Utilization of Marine Organisms in Fujian Province, 361013 Xiamen, Fujian Province, China
3Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, 361013 Xiamen, Fujian Province, China

Abstract: 

GPP (glycoproteins extracted from Perna Viridis), was a natural product extracted from mussel. This study was designed to evaluate both the antioxidant and free radical scavenging activities and protection against H2O2-induced oxidative damage of GPP. L02 cells were exposed to 100 μM H2O2 with or without GPP at different concentrations. Cell viabilities were monitored by MTT-test, MDA production in culture medium, ROS level, SOD and GSH activities were detected. The in vitro experiments demonstrated that GPP exhibited good capacity of scavenging hydroxyl radicals and superoxide anions with activities the IC50 value of 3.38, 3.36 mg/mL respectively. GPP could significantly increase the activity of SOD and GSH, and reduce the level of MDA and ROS in the culture medium, and protect the cells against H2O2-induced stress to offer vital cytoprotection against the oxidative damage induced by H2O2 in L02 cells. These findings suggested that GPP as a natural production is a potenti al source of natural antioxidants and some extent validates its medicinal potential.

Keywords: 
GPP, antioxidant activity, free radical scavenging H<sub>2</sub>O<sub>2</sub>-induced oxidative stress.
References: 

1. Chen Hui Yin, Yen Gow Chin, Food Chem., 101, 686 (2007). https://doi.org/10.1016/j.foodchem.2006.02.047

2. U.Grienke, J.Silke, Food Chem., 142, 48 (2014). https://doi.org/10.1016/j.foodchem.2013.07.027

3. H.Zhu, M.Geng, H.Guan, J. Ocean UnivQindao, 30, 463 (2000). https://doi.org/10.1177/002193470003000310

4. P.D.Scotti, S.C.Dearing, D.R.Greenwood, R.D.Newcomb, Comp Biochem. Physiol. B, 128, 767 (2001). https://doi.org/10.1016/S1096-4959(01)00301-3

5. M.Charle, S.Chernysh, H.Philippe et al., J. Biol. Chem., 271, 21808 (1996). https://doi.org/10.1074/jbc.271.36.21808

6. B.Hernototh, Fish Shellfish Immunol., 4, 25 (2003). https://doi.org/10.1006/fsim.2002.0415

7. B.Xu, P.Hagglund, H.Stalbrand, J.Janson, J. Biotechn., 92, 267 (2001). https://doi.org/10.1016/S0168-1656(01)00367-4

8. K.Veena, P.Shanthi, P,Sachdanandam, Biol. Pharm. Bull., 29, 565 (2006). https://doi.org/10.1248/bpb.29.565

9. M.A.Mesaik, N.Dastagir, N.Uddin et al., J. Agric Food Chem., 63, 177 (2015). https://doi.org/10.1021/jf505131p

10. C.M.D'avila-Levy, F.M.Araujo, A.B.Vermlho et al., Microbiol Lett., 231, 171 (2004). https://doi.org/10.1016/S0378-1097(03)00915-7

11. S.M.Rafiquzzaman, J.M.Lee, R.Ahmed et al., Int. J. Food Sci. Tech.. 50, 143 (2015). https://doi.org/10.1111/ijfs.12663

12. M.Wang, H.Ma, C.Tian et al., J. Func. Foods, 35, 315 (2017). https://doi.org/10.1016/j.jff.2017.05.049

13. S.J.Liu, Y.T.Pan, Z.Y.Liu et al., J. Southwest China Normal University (Natural Science Edition), 42, 45 (2017).

14. Yanhong Li, Bo Jiang, Tao Zhang et al., Food Chem, 106, 444 (2008). https://doi.org/10.1016/j.foodchem.2007.04.067

15. Y.E.Lihua, SHI Zhe, Liu Huixue et al., J. Rare Earth, 29, 178 (2011). https://doi.org/10.1016/S1002-0721(10)60427-9

16. Chao Zhu, Yuchen Dong, Haile Liu et al., Biomed. Pharmacotherapy, 88, 124 (2017). https://doi.org/10.1016/j.biopha.2016.11.089

17. Ce Shi, Xiangrong Chen, Zuojia Liu et al., Biomed. Pharmacotherapy, 85, 740 (2017). https://doi.org/10.1016/j.biopha.2016.11.092

18. J.G.Wu, Y.J.Kan, Y.B.Wu et al., Pharm. Biol., 54, 919 (2016). https://doi.org/10.3109/13880209.2015.1091481

19. A.E.Mohammad, S.Ali, Food Chem Toxicology, 48, 846 (2010). https://doi.org/10.1016/j.fct.2009.12.020

20. M.Rajesh, S.A.Sreenivas, C.Avijit, Free Radicals Antioxidants, 1, 87 (2011). https://doi.org/10.5530/ax.2011.3.12

21. B.Jamila, T.Helene, D.Mickael et al., Biomed. Pharmacotherapy, 89, 490 (2017). https://doi.org/10.1016/j.biopha.2017.02.047

22. M.Gasperlin, M.Gosenca, Expert Opin Drug Deliv., 8, 905 (2011). https://doi.org/10.1517/17425247.2011.581657

23. Huang Dejiang, OuBoxin, Agric Food Chem., 53, 1841 (2005). https://doi.org/10.1021/jf030723c

24. Huang Lai Zhen, Zhong Min, Hu Xueqiong et al., J. Guangdong Ocean University, 31, 95 (2011).

25. Li Mengjie, Fan Xiuping, Wu Hongmian et al., Modern Food Sci..Technol., 27, 759 (2011).

26. R.Giardino, G.Giavaresi, M.Fini et al., Artificial Cells, Blood Substitutes, and Immobilization Biotechnology, 30, 189 (2002). https://doi.org/10.1081/BIO-120004339

27. S.Kaur, H.P.Singh, D.R.Batish et al., Biochen. Syst. Ecol, 44, 390 (2012). https://doi.org/10.1016/j.bse.2012.06.015

.

Current number: