Вы здесь

Funct. Mater. 2019; 26 (2): 332-336.

doi:https://doi.org/10.15407/fm26.02.332

Experimental study on salt-freezing performance of nano-SiO2 bridge concrete

X. Dong, L. Zhou, Muhammad Aqeel Ashraf

ZheJiang Industry Polytechnic College, ShaoXing, 312000, China China University of Geosciences, Wuhan 430079 China

Abstract: 

The anti-salt performance of nano-SiO2 bridge concrete was tested. The results show that after a certain number of salt freeze tests, the anti-salt and denudation performance of a certain amount of nano-SiO2 concrete is better than that of blank concrete. The total mass per unit area of the exfoliated material and the relative dynamic elastic modulus of the ultrasonic wave are lower than that of the blank concrete, and the anti-salt performance is greatly improved. After 32 times of freeze-thaw cycles of nano-SiO2 with 1.0% and 2.0% nano-SiO2, the total mass of the surface exfoliation of the unit surface is less than 1500 g/m2, and the relative dynamic elastic modulus of the ultrasonic wave is more than 80%, which meets the requirements of anti-salt index.

Keywords: 
Nano-SiO<sub>2</sub>, bridge concrete, anti-salt performance
References: 

1. W.Awadalseed, Z.Jin, H.Zhao, Geoshanghai Intern. Conf. (2018).

2. Y.Wang, R.Cai, C.Lan, X.Cai, C.Rui, C.Chen, et al, Environmental Science & Technology, 52, acs.est.8b02010 (2018).

3. S.Z.Haeri, B.Ramezanzadeh, M.Asghari, J.Colloid&Interface Scien., 493(Complete), 111 (2017). https://doi.org/10.1016/j.jcis.2017.01.016

4. H.Qiang, Appl. Nanoscien., v 1-9 (2018).

5. R.Ivani, S.H.SanaeiNejad, B.Ghahraman, A.R.Astaraei, H.Feizi, Plant Signaling&Behavior, e1044190 (2018). https://doi.org/10.1080/15592324.2015.1044190

6. R.Roychand, S.D.Silva, S.Setunge, D.Law, Eur. J.Environmental&Civil Eng., V?, P? (2017).

7. C.Li, H.Feng, B.Liu, W.Liang, G.Liu, G.G.Ross, et al, Nanotechnology, 28(3), 035707. (2017). https://doi.org/10.1088/1361-6528/28/3/035707

8. K.Starost, E.Frijns, J.V.Laer, N.Faisal, et al, Aerosol Scien. Technol., 51, 00-00 ? (2017).

9. R.Gao, Y.Yao, H.Wu, L.Wang, J.Appl. Polym. Scien., 134, 44603, (2017). https://doi.org/10.1002/app.45075

10. C.Wu, Q. Liu, R.Chen, J.Liu, H.Zhang, R.Li, et al. Acs Appl Mater Interfaces, 9, 11106 (2017). https://doi.org/10.1021/acsami.6b16848

11. D.Savchenko, V.Vorlicek, E.Kalabukhova, et al. Nanoscale Res. Lett., 12, 292 (2017). https://doi.org/10.1186/s11671-017-2057-1

12. T.Buddi, B.N.Rao, S.K.Singh, R.Purohit, R.S.Rana, J.Exp. Nanoscien., 13(sup1), S24-S30 (2018). https://doi.org/10.1080/17458080.2018.1426895

.

Current number: